Centro de Pesquisas de Energia Elétrica

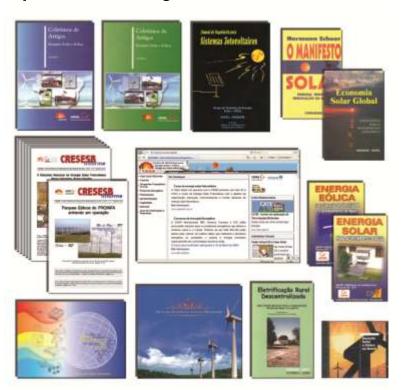
Bruno Montezano **DTE**

Rio de Janeiro, 05/12/13

CEPEL

- Centro de P&D do Sistema Eletrobrás
- Maior centro do Brasil em P&D de energia elétrica
- Maiores laboratórios de alta tensão e potência na América Latina
- Associação sem fins lucrativos fundada em 1974
- Mais de 500 funcionários e 100 parceiros de Universidades
- Infra-estrutura de P&D de US\$ 300 milhões
- Orçamento anual de cerca de R\$ 135 milhões
- Apoio Técnico para o Sistema Eletrobrás, Governo (MME), Entidades Setoriais (ONS, CCEE, EPE e ANEEL), concessionárias e indústria

Unidade Ilha do Fundão

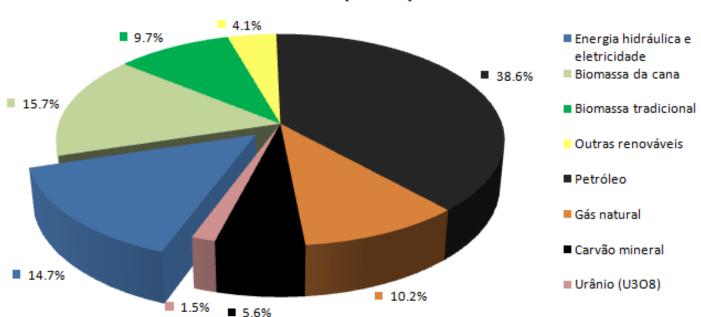


Unidade Adrianópolis

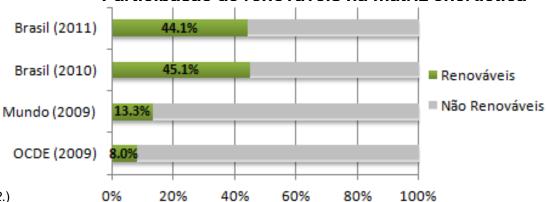
Centro de Referência para Energia Solar e Eólica Sérgio Brito - CRESESB

Promover o desenvolvimento das energias solar e eólica através da difusão de conhecimentos, da ampliação do diálogo entre as entidades envolvidas e do estímulo à implementação de estudos e projetos.

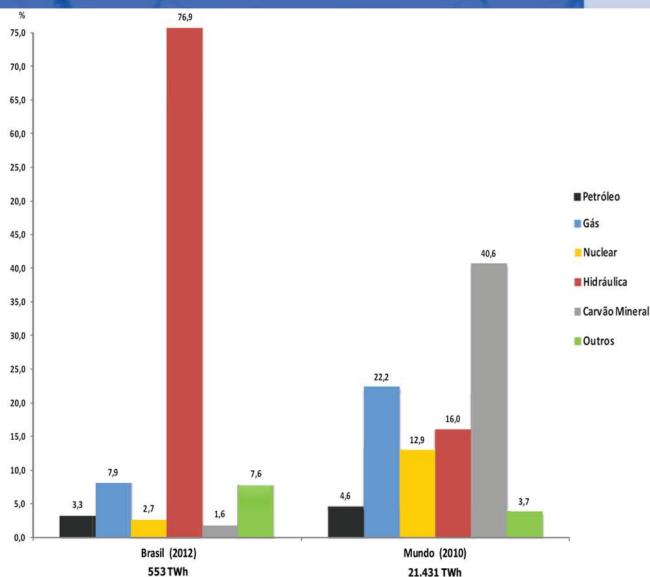
Sumário



- Introdução
- Contexto Nacional e Internacional da Energia Eólica
- Contexto Nacional e Internacional da Energia Solar
- Casa Solar Eficiente


Oferta interna de energia

Brasil (2011)

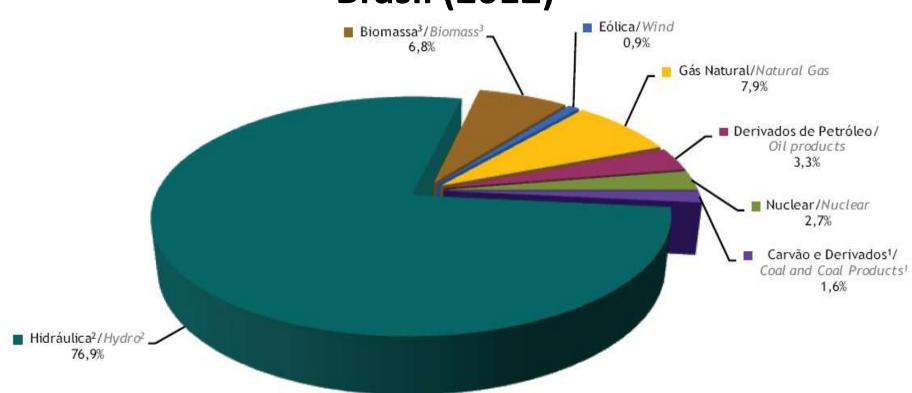


(Fonte: Empresa de Pesquisa Energética – EPE, 2012. BEN 2012.)

Produção de Energia Elétrica por Fonte

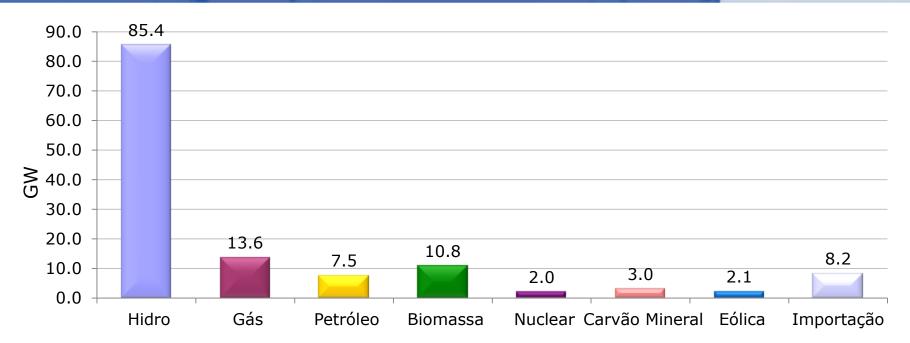
(Fonte: EPE, 2013. Balanço Energético Nacional 2012. Acesso em: 22/08/2013.) Centro de Pesquisas de Energia Elétrica - Cepel

Eletricidade no Mundo


Produtores		2010		2010		2010
	TWh	% Mundial <i>World</i>	Exportadores	TWh	Importadores	TWh
Estados Unidos	4.354	20,3%	Paraguai	43,0	Itália	44,0
China	4.208	19,6%	França	31,0	Brasil	35,0
Japão	1.111	5,2%	Canadá	26,0	Estados Unidos	26,0
Rússia	1.036	4,8%	Rússia	17,0	Finlândia	11,0
Índia	960	4,5%	Alemanha	15,0	Argentina	9,0
Alemanha	622	2,9%	República Tcheca	15,0	Hong Kong (China)	8,0
Canadá	608	2,8%	China	14,0	Noruega	8,0
França	564	2,6%	Bulgária	8,0	Iraque	6,0
Brasil	516	2,4%	Espanha	8,0	Lituania	6,0
Coréia	497	2,3%	Emirados Árabes	8,0	Grécia	6,0
Demais Países	6.955	32,6%	Demais Países	50,0	Demais Países	83,0
Mundo	21.431	100,0%	Mundo	235,0	Mundo	242,0

(Fonte: EPE, 2013. "Anexo III. – Dados Mundiais de Energia". In: Balanço Energético Nacional 2012. Acesso em: 22/08/2013.)

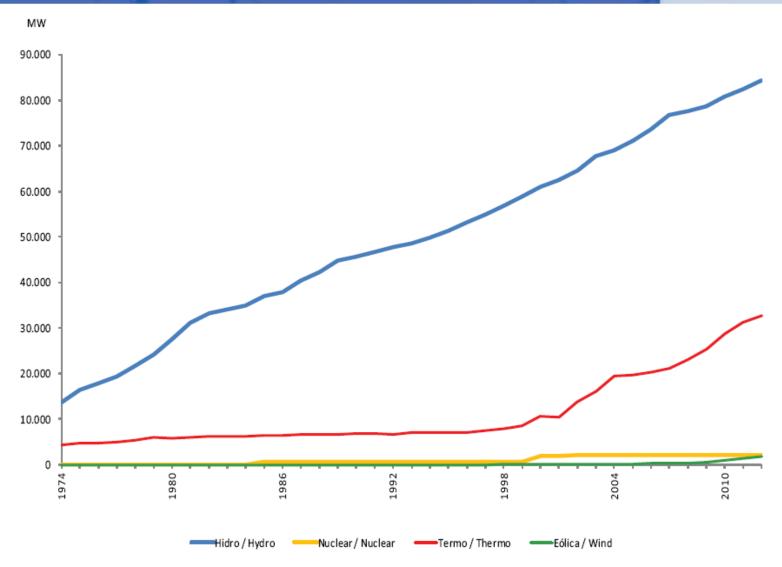
Oferta interna de energia elétrica por fonte no Brasil


Notas/ Notes:

- ¹ Inclui gás de coqueria/ Includes coke oven gas
- ² Inclui importação de eletricidade/ Includes electricity imports
- ³ Inclui lenha, bagaço de cana, lixívia e outras recuperações/ *Includes firewood, sugarcane bagasse, black-liquor and other primary sources*

(Fonte: EPE, 2013. Balanço Energético Nacional 2012. Acesso em: 22/08/2013.)

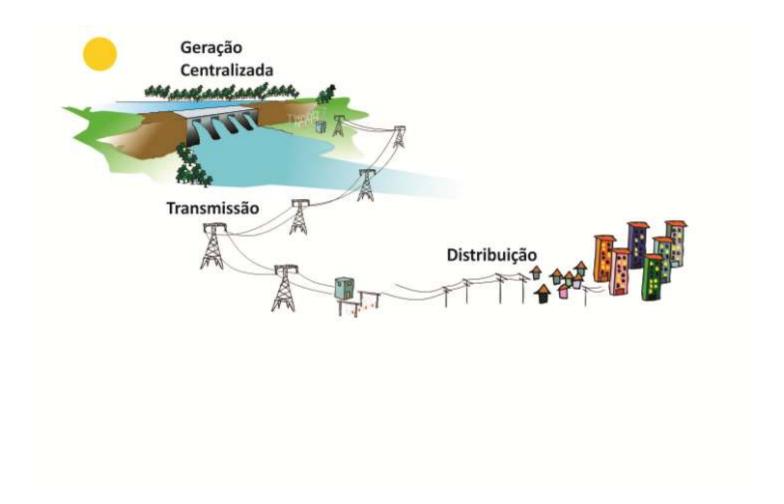
Matriz Elétrica Brasileira


Capacidade Instalada por fonte no Brasil

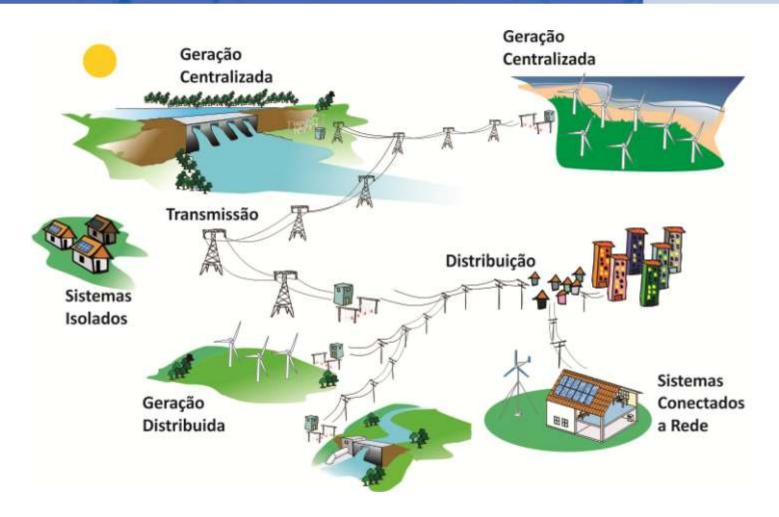
Fonte	Potência [MW]	[%]	
Hidráulica	85.400	68,6	
Fóssil (petróleo, gás natural e carvão mineral)	24.118	19,4	
Biomassa	10.818	8,7	
Nuclear	1.990	1,6	
Eólica	2.109	1,7	
Total	124.435	100,0	

(Fonte: Banco de Informações de Geração. ANEEL, 26/08/2013)

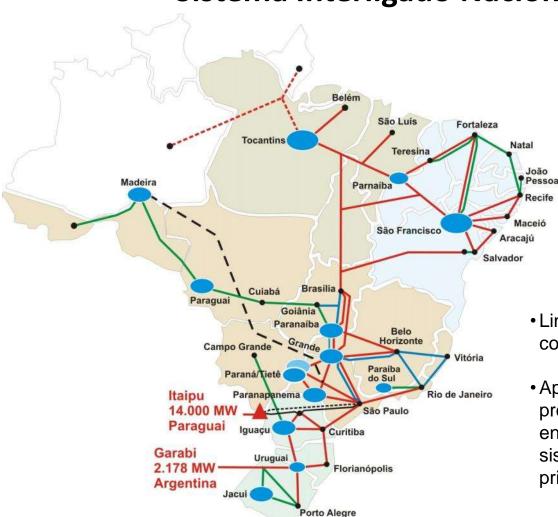
Evolução da capacidade instalada por fonte no Brasil (1974-2012)



(Fonte: EPE, 2013. "Anexo I. - Capacidade Instalada - Brasil". In: Balanço Energético Nacional 2012. Acesso em: 22/08/2013.)

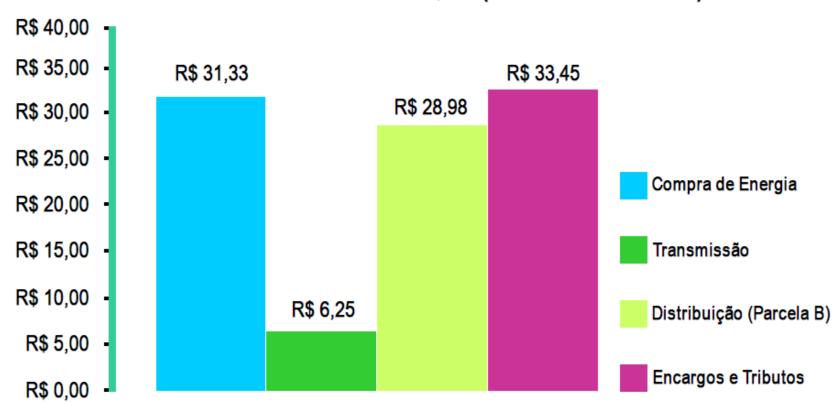

Configuração Anterior do Sistema Elétrico Brasileiro

Configuração Atual do Sistema Elétrico Brasileiro



Características do Sistema Elétrico Brasileiro

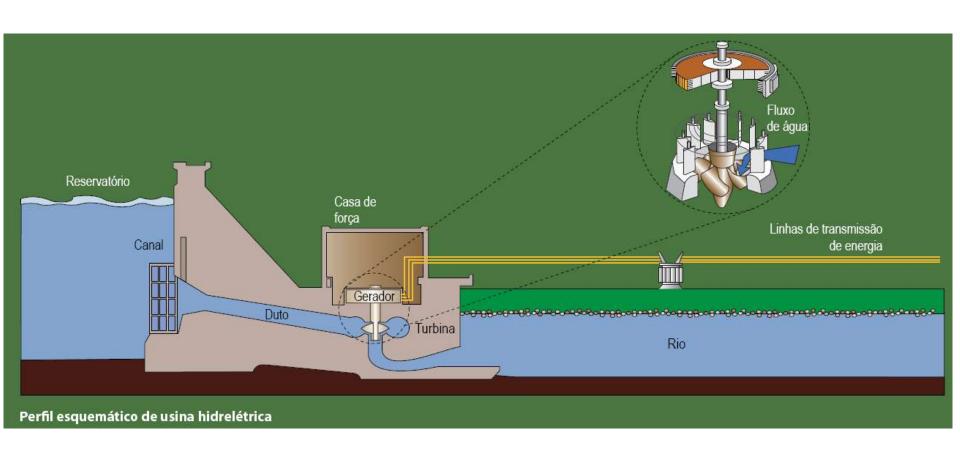
Sistema Interligado Nacional (SIN)


- Linhas de Transmissão de dimensões continentais.
- Apenas 3,4% da capacidade de produção de eletricidade do país encontra-se fora do SIN, em pequenos sistemas isolados localizados principalmente na região amazônica.

(Fonte:ONS, 2012. Disponível em: http://www.ons.org.br/conheca_sistema/mapas_sin.aspx)

Componentes do custo da eletricidade no Brasil

Quanto se paga por componente em uma conta de luz de R\$ 100,00 (média/Brasil 2007)



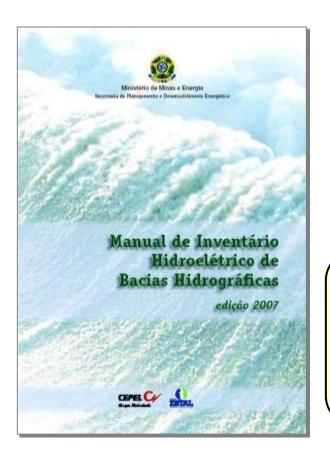
Fonte: Superintendência de Regulação Econômica (SRE) - ANEEL - 12/2007

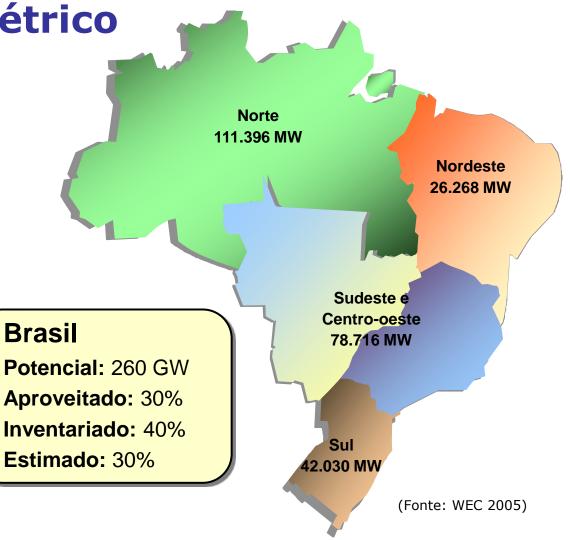
(Fonte: ANEEL, Out/2008. Por dentro da conta de Luz.)

Usina Hidrelétrica

(Fonte: ANEEL, 2008. Atlas de energia elétrica do Brasil. 3 ed. Brasília: Aneel.)

Energia Hidráulica




- As vantagens de uma usina hidrelétrica são o fato de sua operação não ser poluente e de a água ser uma fonte renovável. As barragens também controlam a vazão dos rios, minimizando os efeitos das enchentes.
- As desvantagens são a desapropriação de terras produtivas pela inundação e o impacto ambiental do alagamento, que provoca a perda de vegetação e da fauna terrestres. Além disso existem estudos que indicam emissão de gás de efeito estufa do reservatório devido a decomposição da matéria orgânica submersa com a construção do reservatório (COPPE/UFRJ).

Recursos Renováveis no Brasil Manual de Inventário Hidrelétrico

Potencial Hidrelétrico

Geração Hidrelétrica no Mundo

Produtores	TWh	2010 %		2009	País ²	2010
Troducties	14411	Mundial World	Capacidade Instalada ¹	GW	1 415 -	Hidro ³
China	722,0	20,5%	China	171,0	Noruega	94,7
Brasil	403,0	11,5%	Estados Unidos	100,0	Brasil	78,2
Canadá	352,0	10,0%	Brasil	79,0	Venezuela	64,9
Estados Unidos	286,0	8,1%	Canadá	75,0	Canadá	57,8
Rússia	168,0	4,8%	Japão	47,0	China	17,2
Noruega	118,0	3,4%	Rússia	47,0	Rússia	16,2
Índia	114,0	3,3%	ĺndia	37,0	Índia	11,9
Japão	91,0	2,6%	Noruega	30,0	França	11,7
Venezuela	77,0	2,2%	França	25,0	Japão	8,1
França	67,0	1,9%	Itália	21,0	Estados Unidos	6,5
Demais Países	1.118,0	31,7%	Demais Países	331,0	Demais Países4	15,4
Mundo	3.516,0	100,0%	Mundo	963,0	Mundo	16,3

¹ Baseada na produção.

(Fonte: EPE, 2013. "Anexo III. – Dados Mundiais de Energia". In: Balanço Energético Nacional 2012. Acesso em: 22/08/2013.)

² Baseado nos 10 maiores produtores mundiais.

³ Percentual na geração interna total.

⁴ Exclui países sem geração hidrelétrica.

Usinas Hidrelétricas do Brasil

Tipo	Em operação		Em Con	strução	Outorgado	
про #		[MW]	#	[MW]	#	[MW]
UHE	192	80.593,2	9	17.988,7	16	3.368,4
PCH	461	4.550,6	33	355,5	141	1.960,0
CGH	420	255,7	1	0,8	53	34,4
Total	1073	85.399,5	43	18.345,0	210	5.362,8

Potência Total: 85.4 GW Instalados

Total:

1073 Usinas em Operação

Legenda:Usina Hidrelétrica (UHE), Pequena Central Hidrelétrica (PCH) (≤30 MW), Central Geradora Hidrelétrica (CGH) (≤1 MW).

USINAS HIDRELÉTRICAS em Operação							
Usina	[MW]	Proprietário		Município			
Tucuruí l e II	8.370,0	ELETRONORTE		Tucuruí – PA			
Itaipu (Parte Brasileira)	7.000,0	Itaipu Binacional		Foz do Iguaçu – PR	Paraná		
Ilha Solteira	3.444,0	CESP		Ilha Solteira - SP / Selvíria – MS			
Xingó	3.162,0	CHESF	Canindé de São Francisco - SE / Piranhas – AL		São Francisco		
Paulo Afonso IV	2.462,4	CHESF	Delmiro Gouveia - AL / Paulo Afonso - BA		São Francisco		
		USINAS HIDRELÉTR	ICAS em Const	trução			
Usina	[MW]	Proprietário	io Município		Rio		
Belo Monte	11.233,1	Norte Energia Vitória do Xingu - PA		Xingu			
Jirau	3.300,0	Energia Sustent	ável do Brasil	Porto Velho - RO	Madeira		

(Fonte: ANEEL, 2013. Banco de Informações de Geração. Acesso em: 26/08/2013)

Pespectivas da Energia Hidráulica

- É a fonte de energia que ainda apresenta os menores custos de geração. Os custos da energia gerada pelas Usinas Hidrelétricas brasileiras é na faixa de 70-80 R\$/MWh.
- Os maiores potenciais remanescentes estão localizados em regiões com fortes restrições ambientais e distantes dos principais centros consumidores.
- As Pequenas Centrais Hidréletrica (PCHs), com potências de 1-30 MW, operam a fio d'água com reservatórios limitados. Essa modalidade de aproveitamento hidráulico apresenta um menor impacto ambiental sendo enquadrada com uma fonte alternativa.

Tecnologias em Foco (energia renovável complementar)

Solar fotovoltaica

Solar térmica

Aplicações da Energia Eólica para bombeamento d'água

Catavento

- Residências
- Fazendas
- Aplicações Remotas

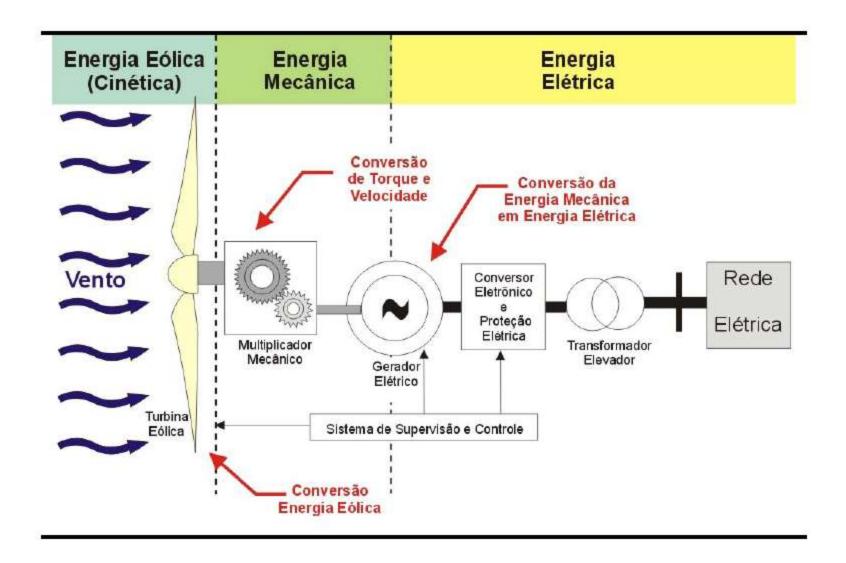
Aplicações da Energia Eólica para geração de energia elétrica

Pequeno Porte (≤10 kW)

- Residências
- Fazendas
- Aplicações
 Remotas

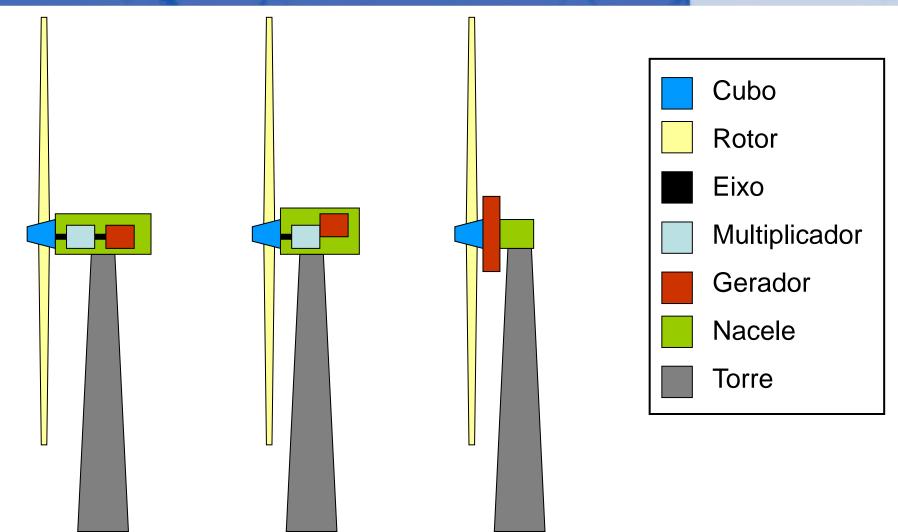
Intermediário (10-250 kW)

- Sistemas Híbridos
- Geração
 Distribuída

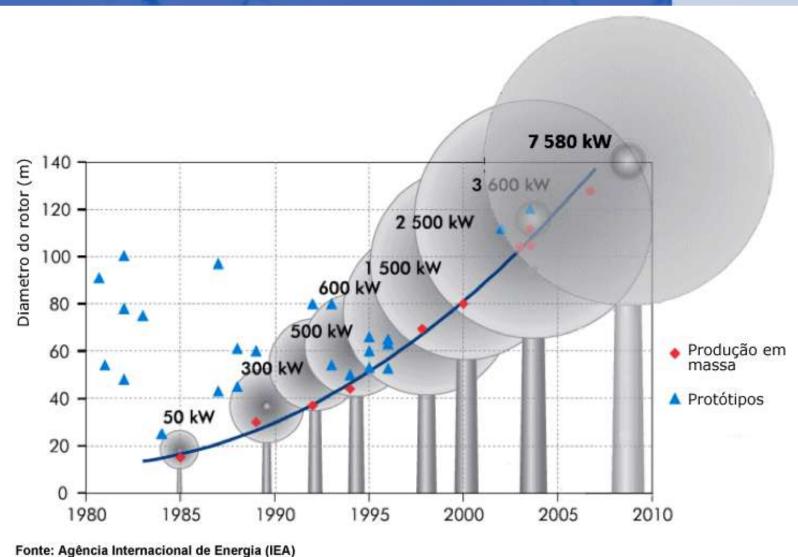


Grande Porte (250 kW - 5+MW)

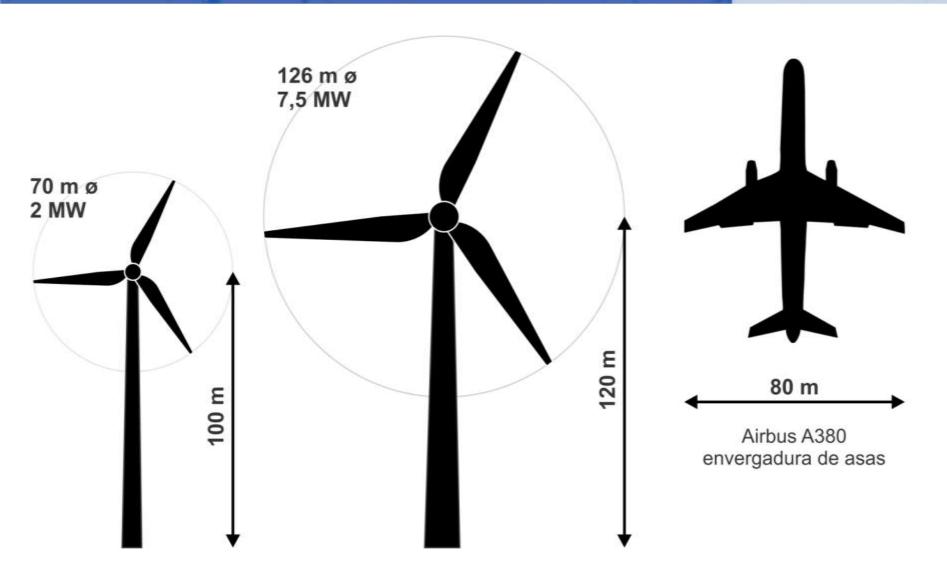
- Parques Eólicos
- Geração Distribuída


Princípio de funcionamento um aerogerador moderno

Configurações de Aerogeradores

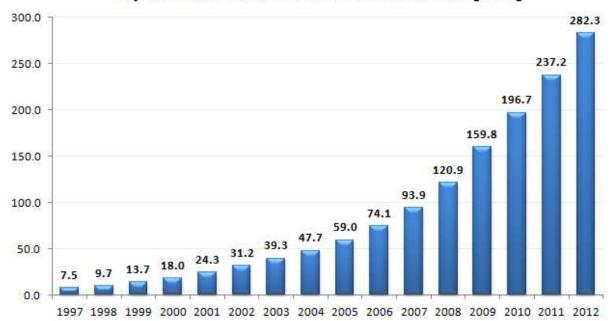


(Fonte: CRESESB, 2008)


Evolução da potência dos aerogeradores

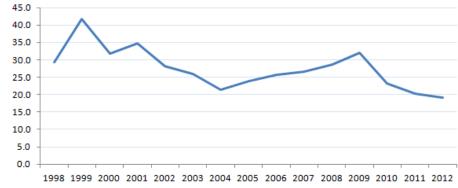
Aerogeradores modernos

Benefícios da Energia Eólica



- É uma fonte de energia limpa e renovável que não produz a emissão de gases de efeito estufa ou resíduos tóxicos. Contribui para o combate às mudanças climáticas.
- Projetada para operar por mais de 20 anos e, ao final de sua vida útil, a área pode ser restaurada com baixos custos financeiros e ambientais. É uma forma de desenvolvimento essencialmente reversível.
- Melhora da segurança e confiabilidade do fornecimento de energia elétrica com a diversificação da matriz.
- Reduz a dependência de importação de energia.
- A geração de empregos com desenvolvimento do mercado de energia eólica.

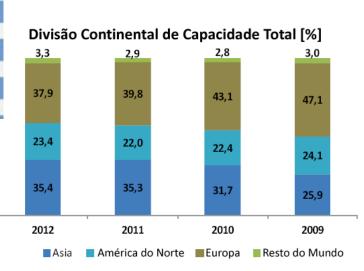
Evolução da capacidade instalada de geração eólica no Mundo



Capacidade Total Instalada no mundo [GW]

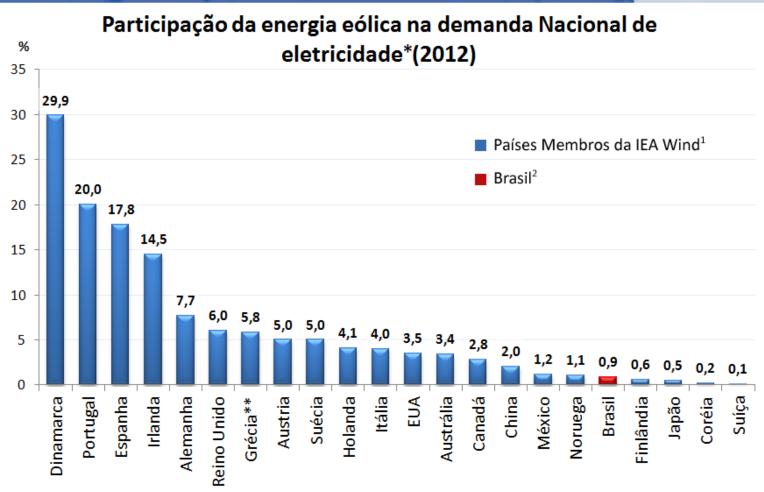
282,3 GW instalados no mundo em 2012.

Taxa de crescimento do mercado global [%]


(Fonte: WWEA, 2012. 2012 Annual Report. Disponível em: http://www.wwindea.org/)

Centro de Pesquisas de Energia Elétrica - Cepel

Capacidade instalada de geração eólica por País

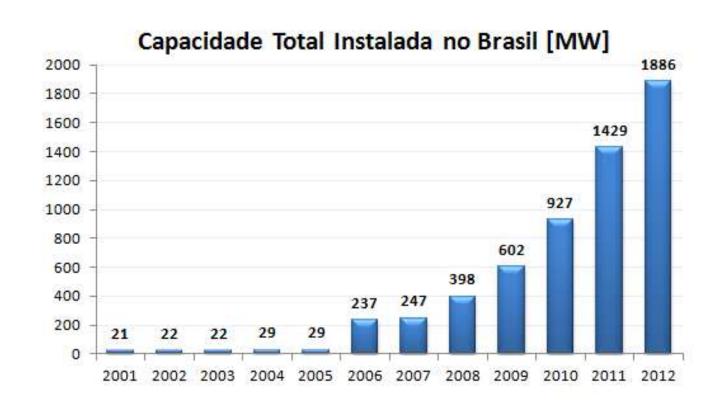

Position 2012	Country/Region	Total capacity installed end 2012 [MW]	Added capacity 2012	Growth rate 2012	Position 2011	Total capacity installed end 2011 [MW]	Total capacity installed end 2010 [MW]
1	China	75'324,0	12'960,0	20,8	1	62'364,0	44'733,0
2	USA	59'882,0	12'999,0	27,6	2	46'919,0	40'180,0
3	Germany	31'308,0	2'415,0	7,7	3	29'075,0	27"215,0
4	Spain	22'796,0	1'122,0	5,2	4	21'673,0	20'676,0
5	India	18'321,0	2'441,0	15,4	5	15'880,0	13'065,8
6	United Kingdom	8'445,0	1'897,0	40,3	8	6'018,0	5'203,8
7	Italy	8'144,0	1'273,0	20,9	6	6'737,0	5'797,0
8	France	7'473,4	757,0	14,1	7	6'549,4	5'569,4
9	Canada	6'201,0	936,0	17,8	9	5'265,0	4'008,0
10	Portugal	4'525,0	145,0	10,8	10	4'083,0	3'702,0
11	Denmark	4'162,0	217,0	6,0	11	3'927,0	3'734,0
12	Sweden	3'745,0	846,0	33,8	12	2'798,0	2'052,0
13	Japan	2'614,0	87,0	4,5	13	2'501,0	2'304,0
14	Australia	2'584,0	358,0	16,1	16	2'226,0	1'880,0
15	Brazil	2'507,0	1'076,5	75,4	20	1'429,0	930,0

(Fonte: WWEA, 2012. 2012 Annual Report. Disponível em: http://www.wwindea.org/)

Participação de geração eólica na matriz elétrica no Mundo

^{*} Percentagem da demanda nacional de eletricidade do vento = (eletricidade gerada a partir vento / demanda nacional de eletricidade) × 100

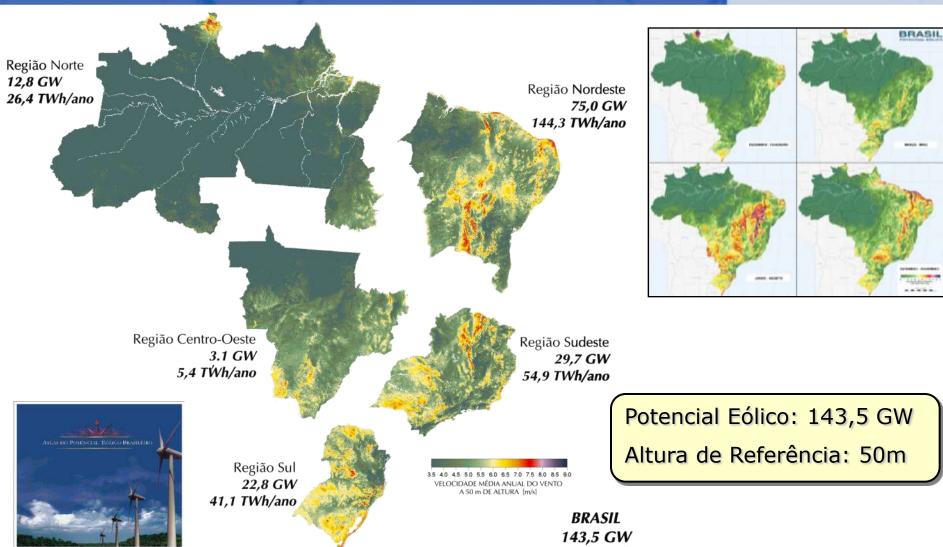
Fontes:


[1] IEA, 2013. IEA WIND: 2012 Annual Report. Acesso em: 29/08/2013.

[2] EPE, 2013. Balanco Energético Nacional 2012. Acesso em: 29/08/2013.

^{**} Números do Global Wind Energy Council (GWEC 2013) em 2012

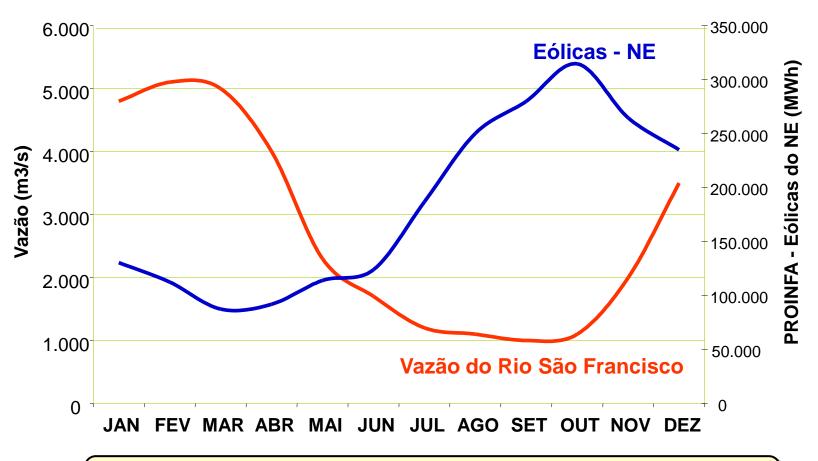
Evolução da capacidade instalada de geração eólica no Brasil



Fontes:

ANEEL, 2013. Banco de Informações de Geração. Disponível em: http://www.aneel.gov.br. Acesso em: 22/05/2013
ANEEL, 2013. Fiscalização dos Serviços de Geração. Disponível em: http://www.aneel.gov.br. Acesso em: 24/05/2013

Potencial Eólico Brasileiro


272,2 TWh/ano

(Fonte: CEPEL, 2001. Atlas do Potencial Eólico Brasileiro.)

Complementaridade sazonal entre os ventos e as vazões hídricas

Sazonalidade das Usinas Eólicas do Proinfa

Potencializa maior estabilidade sazonal de oferta

Usinas Eólicas do Brasil

Empreendimentos de Geração Eólica					
# Projetos	Situação Atual	Potência [MW]			
197	Outorgado	5.247,4			
93	Em construção	2.346,5			
96	Em operação	2.109,3			

- Geração Eólica total (2.109 MW)
 corresponde a 1,7% da Capacidade
 Instalada no Brasil.
- 57 usinas eólicas foram instaladas no âmbito do PROINFA (2004), somando um total de 1.422,9 MW.

As 5 Maiores Usinas Eólicas em Operação							
Usina MW Proprietário		Município					
Praia Formosa	105,0	Eólica Formosa Geração e Comercialização de Energia S.A.	Camocim - CE				
Alegria II	100,6	New Energy Options Geração de Energia S/A	Guamaré - RN				
Parque Eólico Elebrás Cidreira 1	70,0	Elebrás Projetos S.A	Tramandaí - RS				
Canoa Quebrada	57,0	Bons Ventos Geradora de Energia S.A.	Aracati - CE				
Eólica Icaraizinho	54.6	Eólica Icaraizinho Geração e Comercialização de Energia S.A.	Amontada - CE				

(Fonte: ANEEL, 2013. Banco de Informações de Geração. Acesso em: 26/08/2013)

Sistemas de Grande Porte

Mucuripe – 2,4 MW (Fortaleza, CE)

Osório – 50 MW (Osório, RS)

RN 15 - 49,3 MW (Rio do Fogo, RN)

Paracuru – 23,5 MW (Paracuru, CE)

Perspectivas da Energia Eólica

Nordeste está queimando óleo combustível

Do total de energia térmica que está sendo gerada no país, cerca de 870MW estão sendo consumidos na Região Nordeste. Quase a metade da energia de origem térmica gerada no Nordeste provém de usinas movidas a óleo diesel e óleo combustível. Nas regiões Sudeste e Centro-Oeste estão sendo consumidos cerca de 2.085MW de origem térmica. Outros 1.596MW térmicos estão sendo gerados no Sul.

O ONS aumentou para quase 3.000MW médios a transferência de energia do Sudeste para as regiões Norte e Nordeste esta semana. Com a escassez das chuvas, os precos da energia no mercado livre subiram para R\$ 473,30 o MWh nos negócios realizados esta semana.

20 · ECONOMIA O GLOBO

Terça-feira, 8 de janeiro de 2008

Sem chuvas, térmicas operam a plena carga

Usinas funcionam para preservar volume de água dos reservatórios. ONS espera fim da estiagem nos próximos dias

Ramona Ordoñez

 Todas as usinas termelétricas do país estão operando com carga máxima devido à orte estiagem observada nas últimas semanas nas regiões Sudeste e Nordeste. Nos ûlimos dias está sendo gerado am total de 4.557 megawatts (MW) médios de energia térmica. Desse total, cerca de 2.400MW são produzidos por termelétricas a gás natural. O restante é proveniente de usinas que usam óleo diesel, óleo combustível e carvão, entre outros insumos.

O fato é que a Petrobras não tem gás natural suficiente para atender ao consumo de todas as térmicas existentes no país. O compromisso da Petrobras para este ano é garantir gás natural suficiente para geração de até 3.200MW médios, contra 2.200MW no ano passado e chegando a 4.500MW no próximo ano.

Toda a energia produzida pelas usinas termelétricas além de outros 1.700MW que estão sendo gerados pelas usinas nucleares de Angra 1 e 2 tem como finalidade economizar a água nos reservatórios das hidrelétricas. Apesar tade da média histórica. de estarmos em pleno período de chuvas, na primeira semana do més de janeiro as precipitações ficaram 55% abaixo da média histórica dos últimos 76 anos nas regiões Sudeste e Centro-Oeste, enquanlume de chuvas ficou na me-

O ONS não quis falar sobre o assunto, informando apenas que as termelétricas estão operando a plena carga desde meados do ano passado, justamente com o objetivo de poupar os reservatórios das to na Região Nordeste o vo- usinas hidrelétricas. A expectativa dos técnicos do ONS é

intensidade nos próximos dez dias, melhorando o nivel dos reservatórios.

Nas regiões Sudeste e Centro-Oeste, o nível de água nos reservatórios das principais usinas é o mais baixo dos últimos quatro anos. Segundo dados do próprio ONS, nas

que as chuvas caiam com mais regiões Sudeste e Centro-Oes- de risco) estabelecido pelo te o nível dos reservatórios ONS. Já na Reglão Nordeste, o estava, em média, em 44,9%, nível dos principais reservacontra pouco mais de 50%, tórios está em 27%, o que reque foi o normalmente regis- presenta 17% acima da martrado nesta época em anos gem de segurança. Na Região anteriores. Apesar disso, esse. Norte, o nível dos reservavolume ainda está 5.6% acima tórios está em 30%, enquanto do nível mínimo de segurança no Sul é de 74.3% (a chamada curva de aversão

Nordeste está queimando óleo combustível

Do total de energia térmica que está sendo gerada no país, cerca de 870MW estão sendo consumidos na Região Nordeste. Quase a metade da energia de origem térmica gerada no Nordeste provém de usinas movidas a óleo diesel e óleo combustível. Nas regiões Sudeste e Centro-Oeste estão sendo consumidos cerca de 2.085MW de origem térmica. Outros 1.596MW térmicos estão sendo gerados no Sul.

O ONS aumentou para quase 3.000MW médios a transferência de energia do Sudeste para as regiões Norte e Nordeste esta semana. Com a escassez das chuvas, os preços da energia no mercado livre subiram para R\$ 473,30 o MWh nos negócios realizados esta semana.

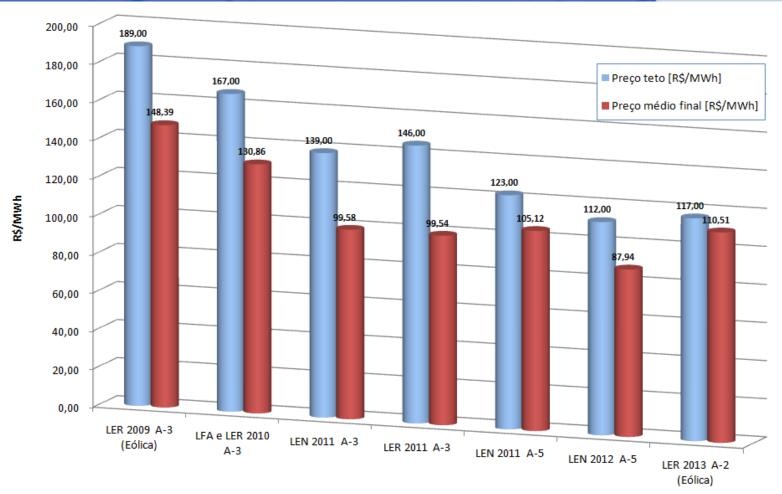
Vale e BNDES se unem para gerar energia limpa

Nova empresa começa a funcionar este ano com investimento de R\$ 220 milhões

Bruno Rosa

· De olho nas discussões sobre o aquecimento global, a Vale. maior produtora de minério de ferro do mundo, e o Banco Nacional de Desenvolvimento Econômico e Social (BNDES) se juntaram para criar a Vale Soluções em Energia (VSE). A nova empresa, que foi concebida com o Centro de Tecnologia em Energia, no interior de São Paulo, tem por objetivo desenvolver processos de geração de energia ambientalmente sustentável e estimular o uso de fontes energéticas renováveis. A empreitada nasce com investimento previsto de R\$ 220 milhões até 2010. As atividades começam no primeiro semestre deste ano.

Na nova companhia, a Vale terá 51% do capital, a BNDESPar, braço de investimentos do BNDES, ficará com 44%, e a empresa paulista Sygma Tecnologia, Engenharia, Indústria e Comércio participará com 5%. Na primeira etapa da companhia, estão


previstas atividades de desenvolvimento tecnológico, pesquisa nas áreas de gaseificação de carvão térmico e de biomassa. produção de turbinas a gás e motores pesados multicombustíveis. Também estão previstos acordos de cooperação e convênios com a Universidade de São Paulo (USP) e o Instituto Tecnológico de Aeronáutica (ITA), por exemplo,

Segundo o BNDES, o objetivo é apoiar a inovação, o

desenvolvimento científico e tecnológico. Além disso, continua o banco, o programa pretende ampliar a geração de energia sustentável no país. Haverá também programas comapolo a pesquisas e concessão de bolsas de pós-graduação e cursos de especialização. Para a Vale, a intenção é utilizar as novas tecnologias a serem desenvolvidas pelo Centro para garantir seu abastecimento. A empresa terá sede no Rio, mas fisicamente ficará instalada no Parque Tecnológico de São José dos Campos, em São Paulo,

Leilões de Energia Eólica

	LER 2009 A-3 (Eólica)	LFA e LER 2010 A-3	LEN 2011 A-3	LER 2011 A-3	LEN 2011 A-5	LEN 2012 A-5	LER 2013 A-2 (Eólica)	Total
Potência (MW)	1805,7	2047,8	1067,7	861,1	976,5	281,9	1505,2	8545,9

(Fonte: EPE, 2013. Leilões. Disponível em: http://www.epe.gov.br/leiloes/Paginas/default.aspx. Acesso em: 27/08/13)

Perspectivas da Energia Eólica

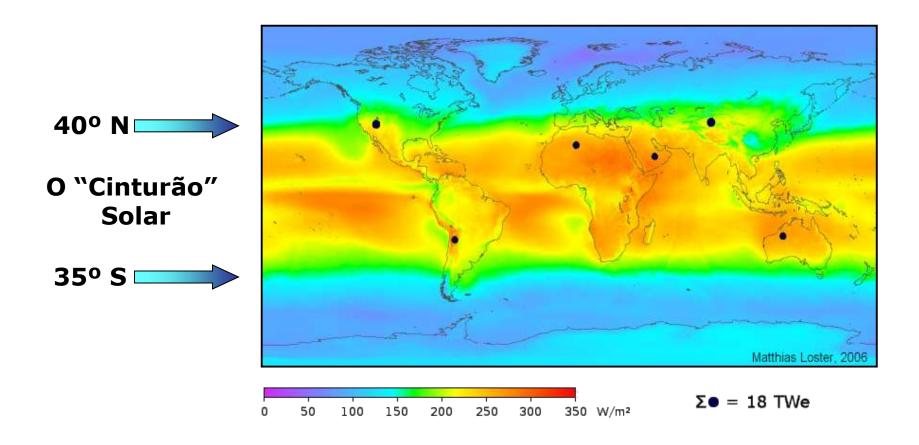
- Energia limpa e renovável é uma alternativa a expansão de geração termoelétrica baseada em combustível fósseis contribuindo para mitigação das mudanças climáticas (um único aerogerador de 1,8 MW poupa a emissão de mais de 2 ton de CO2 anualmente).
- Perspectivas de crescimento com o custo da eletricidade gerada em queda contínua. Entre 1990 e 2008, a capacidade instalada no mundo dobrava a cada 3 anos coincidindo reduções de 15% nos preços.
- O grande potencial eólico brasileiro e a evolução tecnológica dos aerogeradores apontam a energia eólica como uma alternativa viável econômica e ambientalmente.
- No último leilão de energia de reserva, realizado em 23/08/13, foram contratados
 1.505MW de potência em usinas eólicas (66 projetos), o que representa 700,7MW médios de garantia física contratada, com preço médio de venda de R\$ 110,51/MWh.
- Apresenta fatores de capacidade entre 42% e 32%, enquanto usinas elétricas convencionais apresentam em média 60%.

Energia Eólica X Energia Hidráulica

Complementares

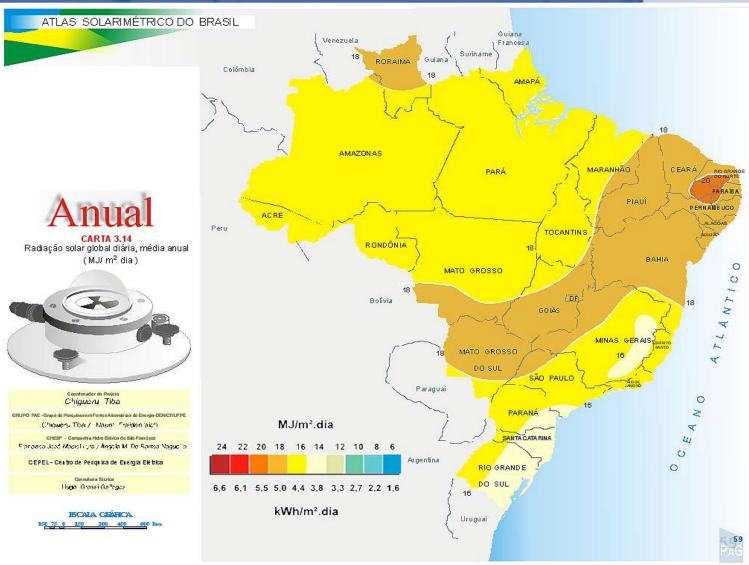
Tecnologias em Foco (energia renovável complementar)

Eólica



Solar térmica

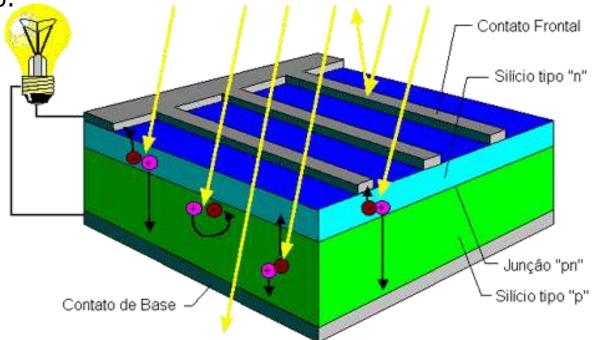
Radiação Solar Global



(Fonte: Wikipedia)

Potencial Solar

(Fonte: Atlas Solarimétrico do Brasil. UFPE, 2000)


Efeito Fotovoltaico

Efeito Fotovoltaico – Conversão direta de energia luminosa (fótons) em energia elétrica

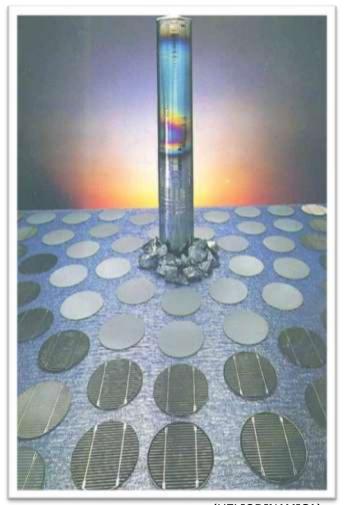
Célula Fotovoltaica – construída a partir de uma junção p-n de material semicondutor, tem a propriedade de implementar o efeito

fotovoltaico.

(Fonte: CRESESB, 2006. <u>Tutorial de Energia Solar Fotovoltaica</u>)

Purificação do Silício (Processo de Czochralski)

$$SiO_2 + 2C \implies Si + 2CO$$

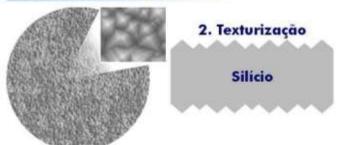

Pureza 98% a 99%

Levemente dopado com Boro (tipo P)

Silício Grau Eletrônico

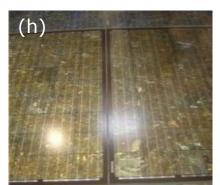
Pureza de no mínimo 99,9999%

(HELIODINAMICA)


Fabricação das Células de Silício

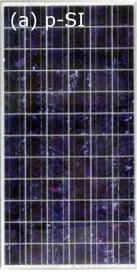
Silício

LÂMINA DOPADA/ISOLADA



(ADRIANO, 2005)

Módulos Fotovoltaicos disponíveis no mercado


- a) Silício Cristalino (m-Si e p-Si)
- b) Silício amorfo hidrogenado (a-Si)
- c) Telureto de cádmio (CdTe)
- d) Disseleneto de cobre (gálio) e índio (CIS e CIGS)
- e) Arseneto De Gálio (GaAs)
- f) Células de Multi-Junção
- g) Corantes
- h) Módulos coloridos e Módulos High Power (contatos debaixo da célula, $\eta = 19\%$)

(Fonte: IDEAL, 2011, http://www.americadosol.org/tecnologias-no-mercado-3/. LUQUE, A. e HEGEDUS, S, 2003, Handbook of photovoltaic Science and Engineering) Centro de Pesquisas de Energia Elétrica - Cepel

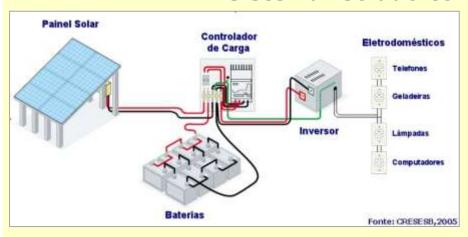
Células Fotovoltaicas de Silício

Silício monocristalino (mono-Si)

- Rendimento: 15-18%
- Espessura: 0.3 mm
- Estrutura:homogênea
- Vida Útil: 20-40 anos

Silício policristalino (poly-Si)

- Rendimento: 13-16%
- Espessura: 0.3 mm
- Estrutura: Vários cristais de diferentes orientações são formados durante o processo de purificação
- Vida Útil: 20-40 anos


Silício amorfo (a-Si)

- Rendimento: 5-10%
- Espessura: 0,001 mm
- Estrutura: homogênea
- Vida Útil: 15-25 anos

Sistemas Fotovoltaicos

Sistema Isolado com Inversor de Tensão

- Instalado em áreas de difícil acesso a rede elétrica, normalmente zonas rurais
- A energia fotovoltaica é a única fonte de eletricidade sendo necessário algum armazenamento, como baterias
- Atendimento a uma residência individual ou uma pequena comunidade

Sistema Híbrido com Geração Eólica

- A geração fotovoltaica funciona em conjunto com outros, como geradores eólicos ou diesel
- Sistemas mais complexos, exigem um controle capaz de integrar as diferentes formas de geração de energia
- Estes sistemas podem estar conectados a rede, isolados ou ter o apoio da rede

Sistema Fotovoltaico Residencial Conectado à Rede

- É o tipo mais popular de instalação FV, normalmente sobre o telhado de casas
- É necessário a presença de um inversor, para transformar a energia em c.c. para c.a.
- A eletricidade gerada pelos módulos FV é entregue a rede elétrica convencional

Central Fotovoltaica Conectada à Rede

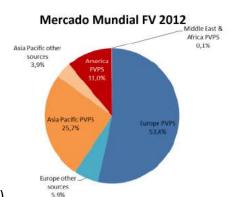
Central Fotovoltaica Neurather See (Alemanha) 360kWp

Evolução da capacidade instalada de geração fotovoltaica no Mundo

IEA PVPS (IEA Photovoltaic Power Systems Programme): acordo de cooperação de pesquisa e desenvolvimento dentro da Agência Internacional de Energia (IEA) estabelecido em 1993.

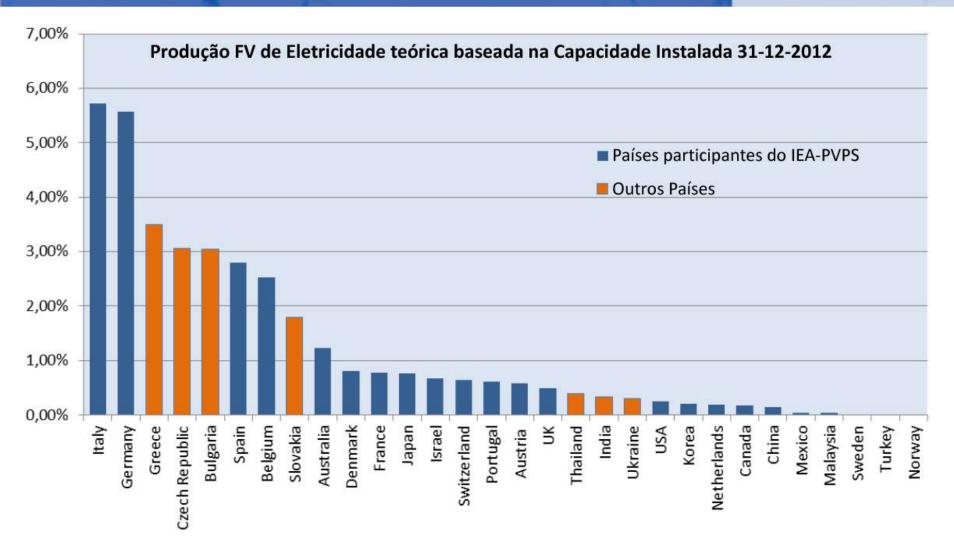
(Fonte: IEA, 2013. PVPS Report: A Snapshot of Global PV 1992-2012. Acesso em: 28/08/2013)

Capacidade Instalada de geração fotovoltaica por país (2012)


	2012 instalações -	- MW	Capacidade Total Instalada – MW		
1	Alemanha	7.604	Alemanha	32.411	
2	China	3.510	Itália	16.250	
3	Itália	3.337	EUA	7.221	
4	EUA	3.313	Japão	7.000	
5	Japão	2.000	China	7.000	
6	França	1.079	Espanha**	5.100	
7	Reino Unido	1.000	França	4.003	
8	Austrália	1.000	Bélgica	2.567	
9	Índia*	980	Austrália	2.400	
10	Grécia*	912	República Checa*	2.085	
	8 GW países		13 GW países		

^{*} Países não participantes do PVPS

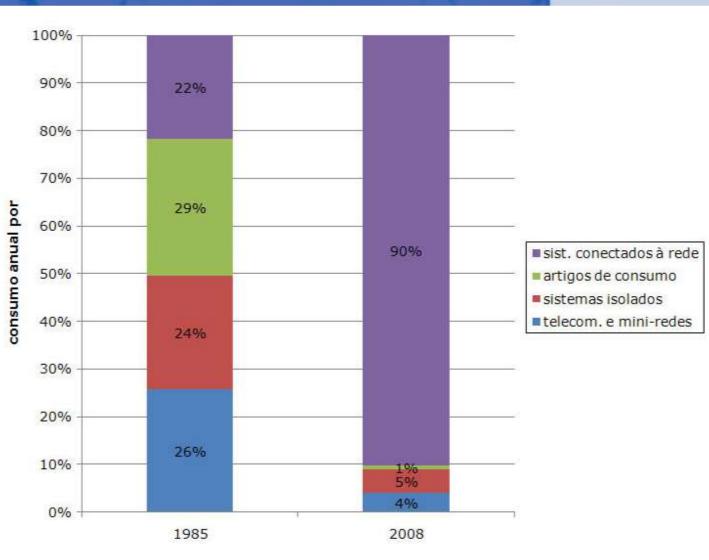
Evolução da distribuição regional de instalações FV de 2010 a 2012



(Fonte: IEA, 2013. PVPS Report: A Snapshot of Global PV 1992-2012. Acesso em: 28/08/2013)

^{**} Os dados da Espanha foram disponibilizados em CA, este número é um recálculo para CC

Participação de geração FV na matriz elétrica no Mundo



Painéis fotovoltaicos Consumo anual por Aplicação

mercado fotovoltaico mundial:

(Fonte: IDEAL, 2011, http://www.americadosol.org/vendas/)

Mercado mundial de painéis fotovoltaicos

- Incentivos governamentais expressivos têm sido utilizados para o desenvolvimento deste mercado (feed-in, incentivos fiscais, linhas de financiamento especiais, etc.)
- Centenas de fabricantes de painéis fotovoltaicos no mundo
- Predominância de aplicações conectadas na rede elétrica
- Custo no Brasil: 6,00 a 8,00 R\$/Wp (módulo completo)
- Evolução tecnológica: Si amorfo com eficiência de 11,3%
- Brasil: Terceiro maior exportador de Si grau metalúrgico do mundo

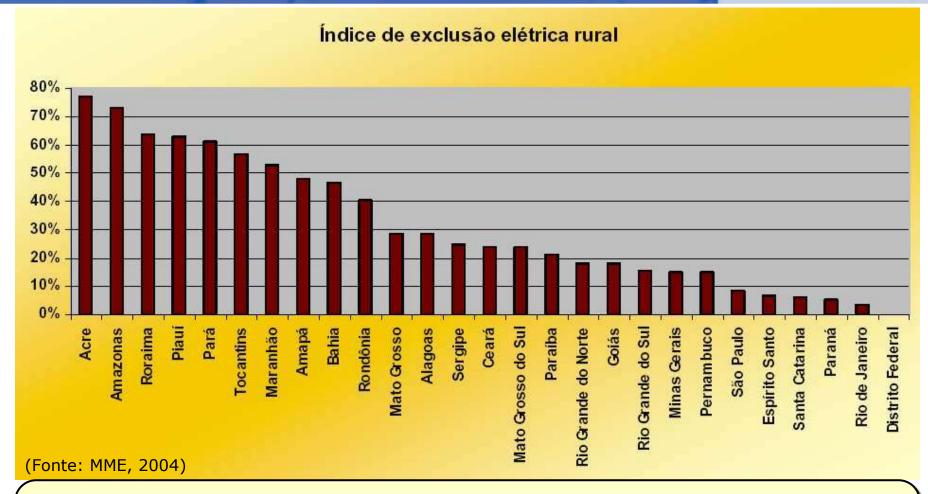
(Fonte: PHOTON INTERNATIONAL, 2009)

Instalações Fotovoltaicas

Crianças assistindo à TV pela primeira vez na comunidade de Boa Sorte. Município de Dianópolis - TO

Sistema de bombeamento da comunidade de Boa Sorte. Município de Dianópolis - TO

Sistema energético no posto de saúde e bombeamento da comunidade de Lago Novo. Município de Tartarugalzinho - AP



Abastecimento comunitário de água da comunidade de Amapá Grande

Município de Amapá - AP

Universalização: metas e desafios

Entorno de 2 milhões de brasileiros ainda não possuem acesso a energia elétrica.

(Fonte: Corbiniano Silva, C. & Pereira, M.G., 2013, *O Desafio do Atendimento Elétrico na Amazônia. In*: Uso da Energia de Biomassa no Brasil, Editora Interciência, Rio de Janeiro, 2013.)

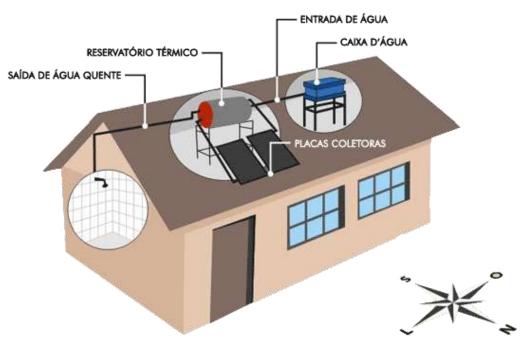
Perspectivas

- Tem sido utilizada, no Brasil, em aplicações distantes da rede, em particular na região amazônica e no interior da região nordeste (exemplo: PRODEEM / Luz para Todos).
- Os custos médios variam de 300-1200,00 R\$/MWh.
- Em Abri/2012 foi homologada pela ANEEL a Resolução Normativa 482, que define os conceitos de microgeração (≤100 KW) e minigeração (≤1 MW) distribuída e o sistema de compensação de energia. Essa resolução regulamenta e viabiliza a conexão de sistemas de geração fotovoltaico de pequeno porte a rede de distribuição, o que permite ao consumidor cativo instalar pequenos geradores em sua propriedade e trocar energia com a distribuidora local.
- No Brasil, se houver uma redução de custos ainda mais significativa do que a que já está se verificando, aplicações interligadas à rede podem contribuir num cenário de substituição de fontes térmicas.

Tecnologias em Foco (energia renovável complementar)

Eólica

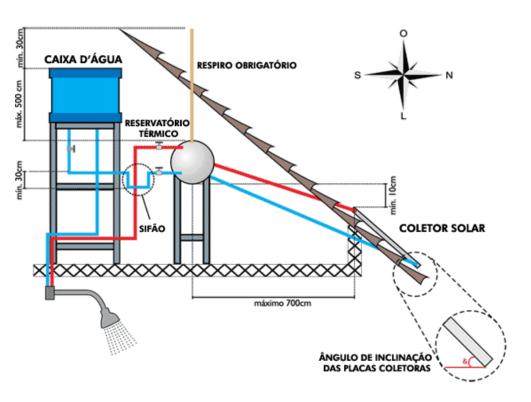
Solar fotovoltaica



Solar Térmico Aquecimento solar residencial

Grande oportunidade de crescimento da utilização de coletores solares planos para aquecimento de água.

É desejável que uma legislação adequada e a disponibilidade de financiamento estimulem sua utilização.



(Fonte: http://www.komeco.com.br/assets/)

Aquecimento Solar Residencial

Instalação

Reservatório de Água Quente

(Fonte: http://www.komeco.com.br/assets/)

Solar Térmico Aquecimento solar residencial

- O Brasil possui a sétima maior área de coletores solares instalados do mundo: 3,1 milhões de m²:
 - 84% no setor residencial;
 - 15% no setor terciário (hotéis e serviços);
 - 1% no setor industrial.
- Em termos populacionais, o Brasil possui apenas **1,72** m² de área coletora instalada para cada 100 mil habitantes, muito atrás de Chipre (84,4), Barbados (26,9) e Turquia (13,5).
- A taxa média de crescimento anual da área coletora instalada no Brasil é de 14%, enquanto no Canadá é de 50%, na Alemanha de 39% e na França e na Grécia, de 34%.

(Fonte: Solar Heat Worldwide, Edition 2008)

Solar Térmico Geração de Energia Elétrica - Heliotermia

Potência Instalada (MW)					
Concentrador Parabólico	468 MW				
Torre Central	11 MW				

(Fonte: Wikipedia, 2008)

Concentrador parabólico

Torre Central

Disco parabólico

Solar Térmico Geração de Energia Elétrica - Heliotermia

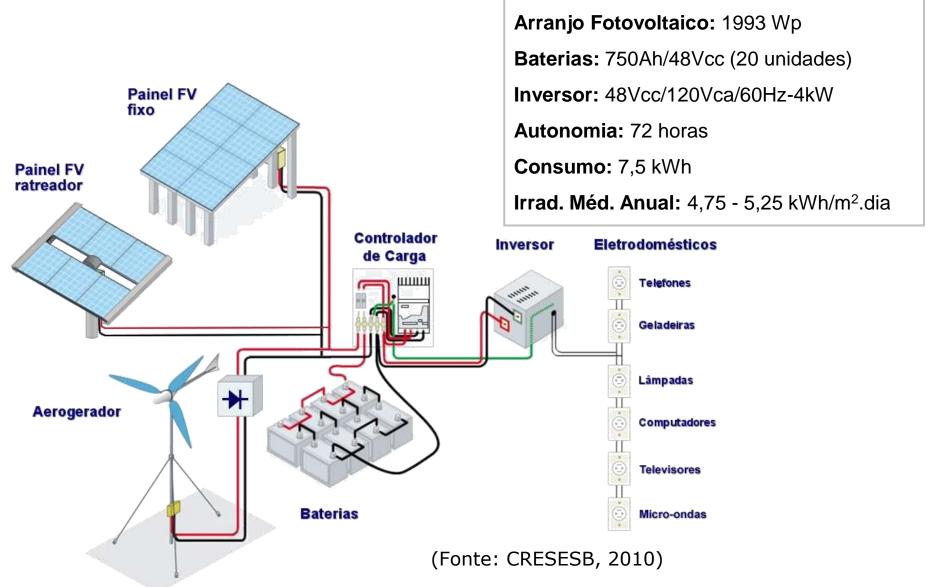
- Custos de Instalação:
 - Plantas sem armazenamento térmico : 5000 Euros/kW
 - Plantas com armazenamento térmico : 6000 7000
 Euros/kW
- Custos da Energia Gerada:
 - Plantas comerciais: 0,22 Euros/kWh (2007)

Desde que haja uma diminuição de custos muito significativa, a geração heliotérmica poderá ser empregada, em particular na Região Nordeste.

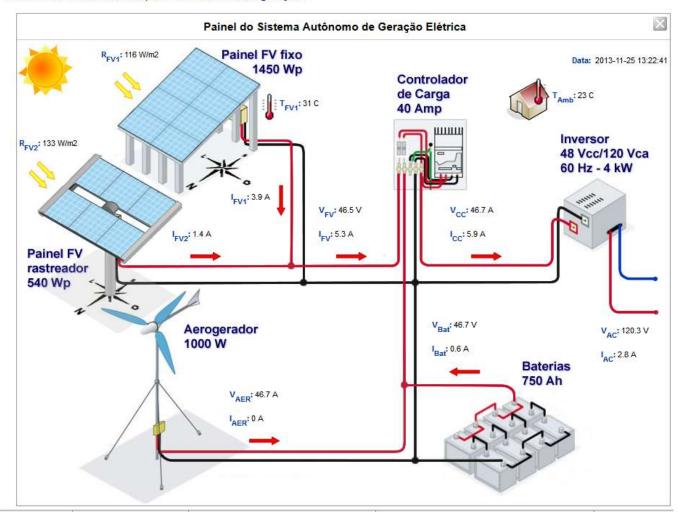
Iniciativa governamental de criação de grupos para estabelecimento de uma agenda de P&D

Casa Solar Eficiente do Cepel

Características Gerais


- Autossuficiente em energia
- painel FV de ~2 kWp;
 aquecimento d'água solar;
 bombeamento d'água FV
- em operação desde Mar/97
- + 16.000 visitantes
 (estudantes, professores;
 profissionais, público, etc.)
- Vários cursos de tecnologia FV

Casa Solar Eficiente Configuração Elétrica



Sistema de Aquisição de Dados

Histórico de dados medidos | Sumário de dados de geração

http://www.cresesb.cepel.br/sad/index.php

Obrigado!

Bruno Montezano

www.cepel.br/cresesb crese@cepel.br

Ministério de Minas e Energia