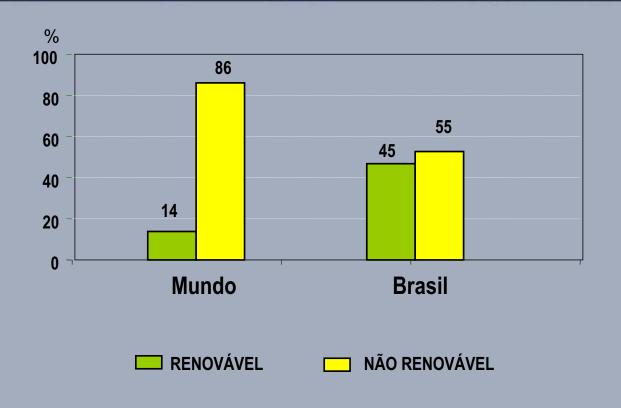


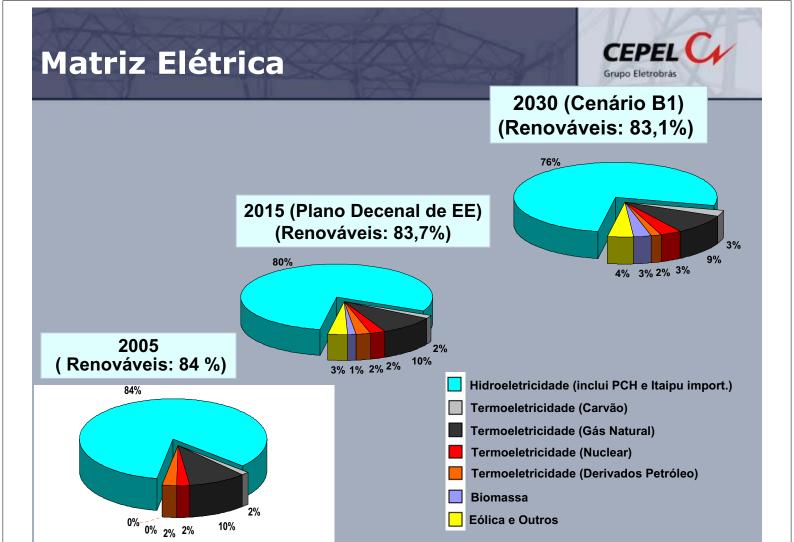
ENERGIAS SOLAR E EÓLICA: ESTADO ATUAL E PERPECTIVAS NO BRASIL

Energias Alternativas - BNDES

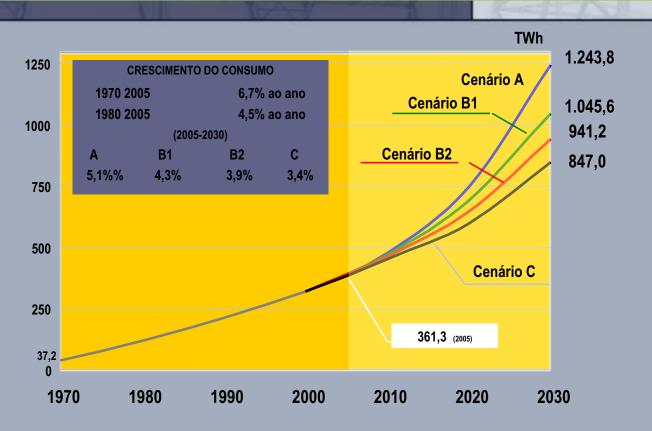
Rio de Janeiro - 15 de Abril de 2008

Hamilton Moss - www.cresesb.cepel.br


ENERGIAS SOLAR E EÓLICA: ESTADO ATUAL E PERPECTIVAS NO BRASIL



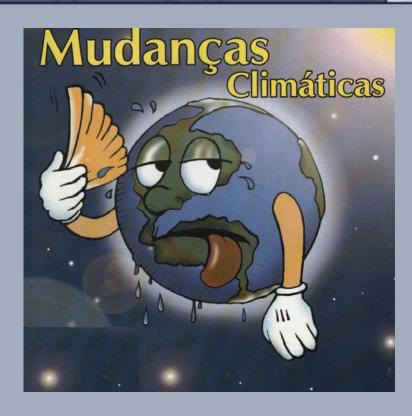
- > Energia: Brasil e Mundo
- Evolução da matriz elétrica brasileira até 2030
- > Energia no novo século: impactos ambientais
- > Novas fontes renováveis: Solar e Eólica
- > Conclusões



Projeção de Consumo Final: Eletricidade

Obs.: inclusive autoprodução clássica/transportada e inclui conservação (progresso autônomo), excluindo contudo consumo setor energético

Emissão de CO₂ de Diversas Tecnologias



Tecnologias	Emissões de CO₂ nos estágios de produção de energia (ton/GWh)					
	Extração	Construção	Operação	Total		
Planta convencional de queima de carvão	1	1	962	964		
Planta de queima de gás	0	0	484	484		
Pequenas hidrelétricas	-	10	-	10		
Energia eólica	-	7	-	7		
Solar fotovoltaico	-	5	-	5		
Grandes hidrelétricas	-	4	-	4		
Solar térmico	-	3	-	3		
Lenha (Extração programável)	-1.509	3	1.346	-160		

Fonte: "Renewable Energy Resources: Opportunities and Constraints 1990-2020" - World Energy Council - 1993

Uso da Energia: Meio Ambiente

FONTE: Instituto de Pesquisa ambiental da Amazônia

Uso da Energia: Custos de Externalidades* (centavos de dólar por kWh)

Carvão: 1,94 a 14,60
Turbina a gás: 0,97 a 3,89
Nuclear: 0,19 a 0,58
Fazenda Eólica: 0,05 a 0,24

*Estimativa de custos para a sociedade e para o ambiente decorrentes de uso de combustíveis fósseis e nucleares, não incluindo lixo nuclear e custos de desativação.

Estudo da UE, ExtermE - WSJ - 2002

Tecnologias em Foco (energia renovável complementar)

──>Solar Fotovoltaica

Solar Térmica

Eólica

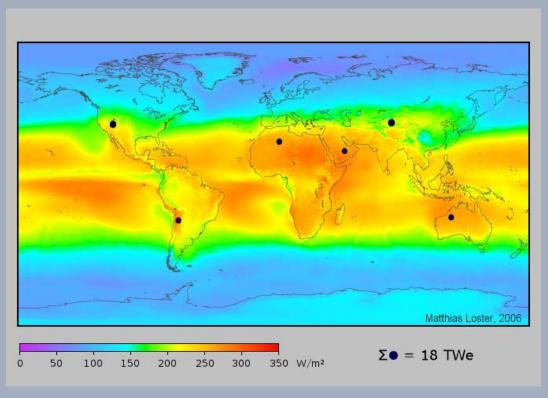
Biomassa

Pequenas Centrais Hidroelétricas

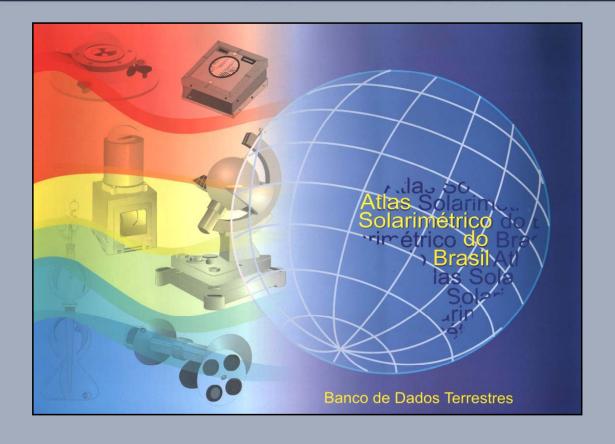
Outras: Geotérmicas, Marés, Células Combustíveis etc.

Maturidade e Custos das Tecnologias

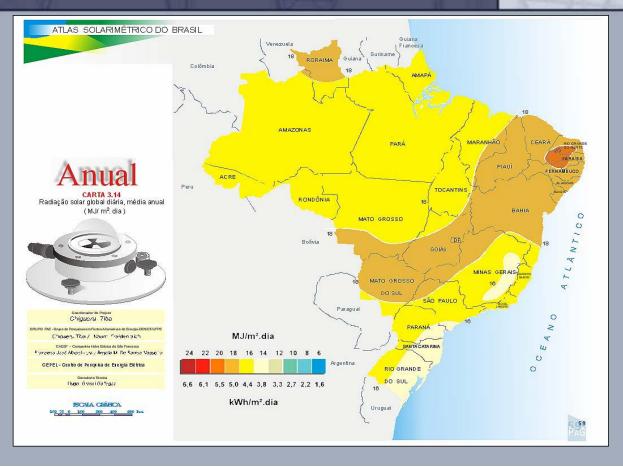
POTENCI AL (GW) TAMANHO TIPICO (KW)		APLICAÇÃO	MATURIDADE DA TECNOLOGIA	VIABILIDADE TÉCNICA	CUSTO (US\$/KW)	CUSTO O&M (US\$/MWh)	CUSTO COMBUSTÍVEL (US\$/MWh)	CUSTO GERAÇÃO (US\$/MWh)	EFICIÊNCIA		
	OLAR OLTAICA	-	0.05 A 10	- INTERMITENTE - GRID E OFF-GRID	DEMONSTRADA (GRID) COMERCIAL (OFF-GRID)	MÉDIA (GRID) ALTA (OFF- GRID)	4.000 a 9.000	4 a 20	0.	250 a 500	10 a 18
IICA	TORRE CENTRAL	-	30.000 A 200.000	- BASE - GRID	PRÉ COMERCIAL	ALTA	1.000 a 4.800	4 a 23	0.	100 a 250	15 a 30
HELIOTÉRMICA	CILINDROS		50.000	- BASE - GRID	COMERCIAL	ALTA	2.600 a 5.000	4 a 23	0.	130 a 250	15 a 30
DISCOS -		20 a 50	- BASE -GRID E OFF-GRID	DEMONSTRADA	MÉDIA	800 a 5.100	15 a 23	0.	100 a 250	15 a 30	
EÓ	LICA	30	300 a 2000	-INTERMITENTE -GRID E OFF-GRID	COMERCIAL	ALTA	1000 a 2000	4 a 12	0.	35 a 120	25 a 45
BIO	BIOMASSA 27.7		10 a 50.000	-BASE -GRID E OFF-GRID	COMERCIAL	ALTA	500 a 2.500	6 a 12	20 a 100	38 a 78	25 a 35
PCH's			50 A 1.000	-VARIÁVEL -GRID E OFF-GRID	COMERCIAL	ALTA	1.000 a 3.000	6 a 15	0.	35 a 102	60 a 85


Em comparação de custos deve-se levar em conta o da rede de distribuição

Radiação Solar Global



Fonte: Wikipedia


Atlas Solarimétrico do Brasil UFPE

Radiação Solar Global Média Anual

Potencial Solar por Região

Uso de Energia: Panorama

A busca de soluções para a problemática energética passa atualmente por três caminhos:

- Busca de fontes renováveis de energia menos agressivas ao meio ambiente.
- Melhoria da eficiência energética dos diversos equipamentos transformadores de energia.
- Combate ao desperdício energético.

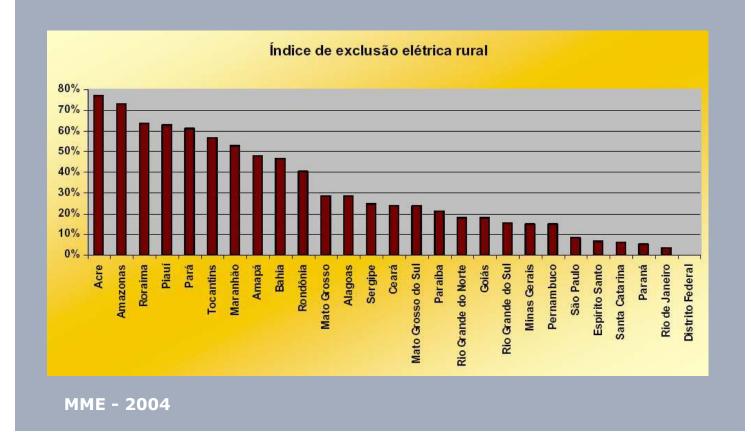
Tecnologias em Foco (energia renovável complementar)

S

Solar Fotovoltaica

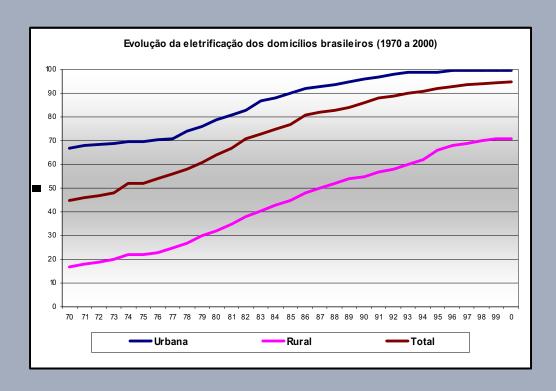
Solar Térmica

Eólica

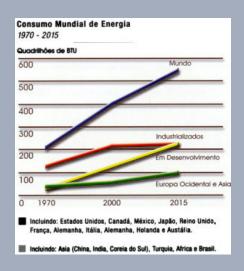

Biomassa

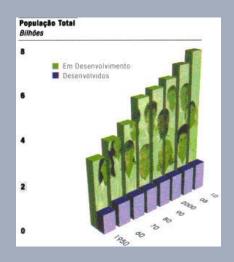
Pequenas Centrais Hidroelétricas

Outras: Geotérmicas, Marés, Células Combustíveis etc.


Universalização: metas e desafios

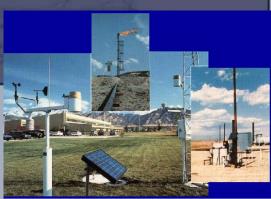
Universalização: metas e desafios

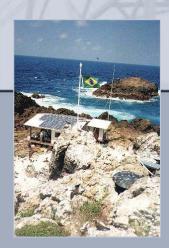


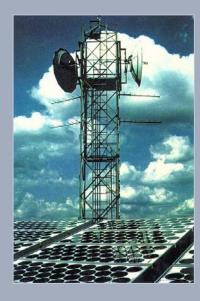


Fonte: Relatório CEPEL-DTE 211035/2003 - giannini@cepel.br

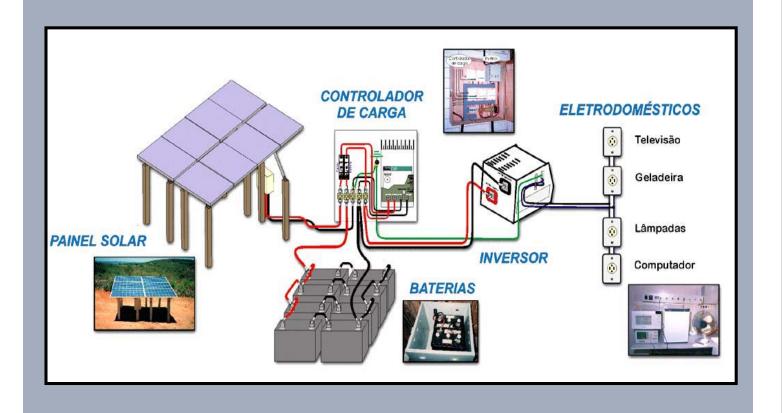
Uso da Energia: Tendência







FONTE: Informativo da Eletronuclear - agosto 2001



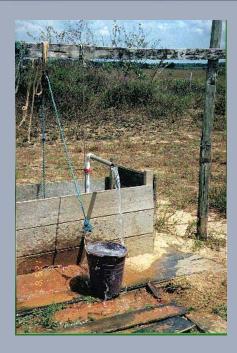
Sistema Fotovoltaico de Geração de Energia Elétrica

Energia e Inclusão Social

Escola da comunidade de Baixão do Archanjo Município de Barra

Sistema Fotovoltaico N.S.P. Socorro - Manacapurú

Instalações Fotovoltaicas Tocantins



Crianças assistindo à TV pela primeira vez na comunidade de Boa Sorte Município de Dianópolis

Sistema de bombeamento da comunidade de Boa Sorte Município de Dianópolis

Sistema de Bombeamento Fotovoltaico

Abastecimento comunitário de água da comunidade de Amapá Grande Município de Amapá - AMAPÁ

Sistema energético no posto de saúde e bombeamento da comunidade de Lago Novo Município de Tartarugalzinho -AMAPÁ

Instalações Fotovoltaicas Projeto Ribeirinhas – Amazonas (Parceria Eletrobrás)

Sistema solar fotovoltaico instalado em N.S.P. Socorro – Manacapurú

Telhado Solar Fotovoltaico

- Avaliação do desempenho de sistemas fotovoltaicos conectados à rede
- Painel fotovoltaico de 16 kWp em operação desde 2002

SOLAR FOTOVOLTAICO

- Pode contribuir, num primeiro momento, em aplicações distantes da rede, em particular na região amazônica
- Caso haja uma significativa redução de custos, aplicações interligadas podem contribuir num cenário em que substitua fontes térmicas
- Produção de equipamentos no Brasil tem vantagem de utilizar a base hidráulica (menor emissão na produção de equipamentos)
- Melhorando condições de vida no campo pode ajudar a fixar populações na área rural diminuindo a pressão sobre os grandes centros

Tecnologias em Foco (energia renovável complementar)

Solar Fotovoltaica

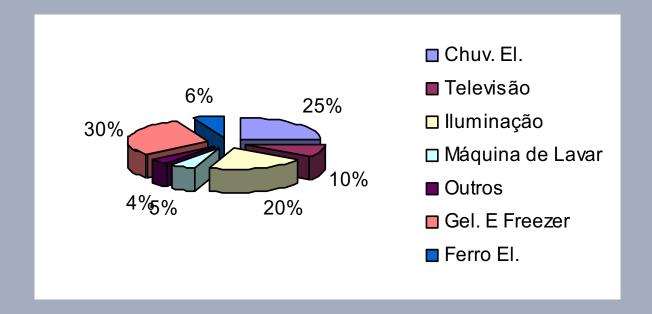
Eólica

Biomassa

Pequenas Centrais Hidroelétricas

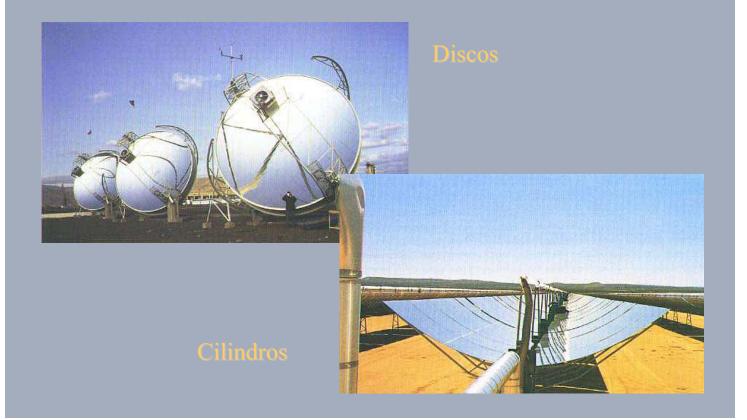
Outras: Geotérmicas, Marés, Células Combustíveis etc.

Aquecimento Solar



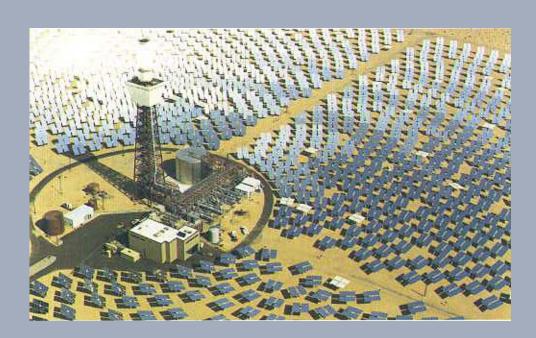
Uso Energia Elétrica Brasil (Residencial)

Como as pessoas usam a energia de um modo geral:


Aquecimento Solar

- O Brasil possui a sétima maior área de coletores solares instalados do mundo: 3,1 milhões de m²
 - √84% no setor residencial
 - √15% no setor terciário (hotéis e serviços)
 - √1% no setor industrial
- ➤ Em termos populacionais, o Brasil possui apenas **1,72** m² de área coletora instalada para cada 100 mil habitantes, muito atrás de Chipre (84,4), Barbados (26,9) e Turquia (13,5)
- ➤ A taxa média de crescimento anual da área coletora instalada no Brasil é de **14%**, enquanto no Canadá é de 50%, na Alemanha 39%, na França e Grécia, 34%.

Tecnologias de Conversão Direta da Radiação Solar - Heliotermia



Tecnologias de Conversão Direta da Radiação Solar - Heliotermia

Torre Centra

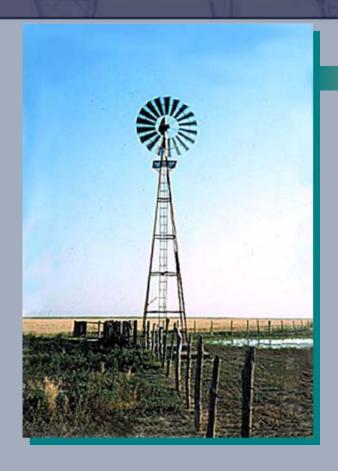
SOLAR TÉRMICO

- Grande oportunidade de crescimento da utilização de coletores solares desde que legislação e financiamento estimulem sua utilização
- Desde que haja diminuição de custos, geração heliotérmica poderá dar sua contribuição, em particular na Região Nordeste

Tecnologias em Foco (energia renovável complementar)

Solar Fotovoltaica

Solar Térmica


Biomassa

Pequenas Centrais Hidroelétricas

Outras: Geotérmicas, Marés, Células Combustíveis etc.

Aplicações da Energia Eólica

Catavento – Bombeamento d'água

- Residências
- Fazendas
- Aplicações Remotas

Aplicações da Energia Eólica

Pequeno Porte (≤10 kW)

- Residências
- Fazendas
- Aplicações Remotas

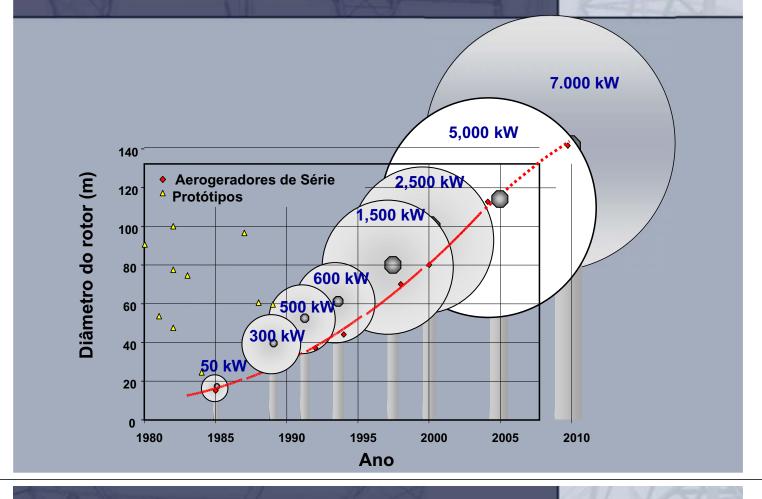
Intermediário (10-250 kW)

- Sistemas Híbridos
- Geração Distribuída

Grande Porte (250 kW - 2+MW)

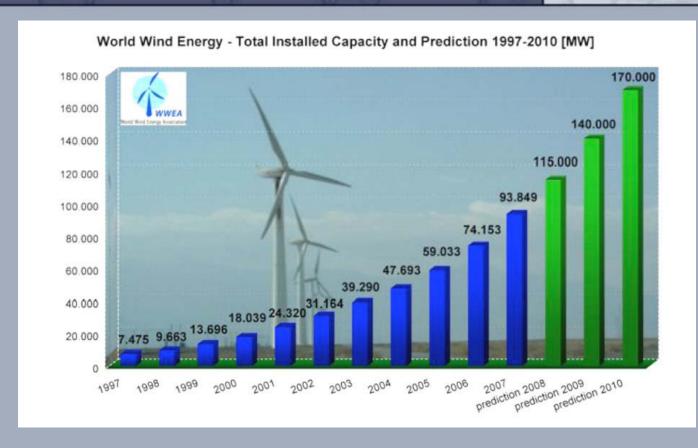
- Fazendas Eólicas
- Geração Distribuída

Sistemas de Grande Porte



Desenvolvimento da Tecnologia

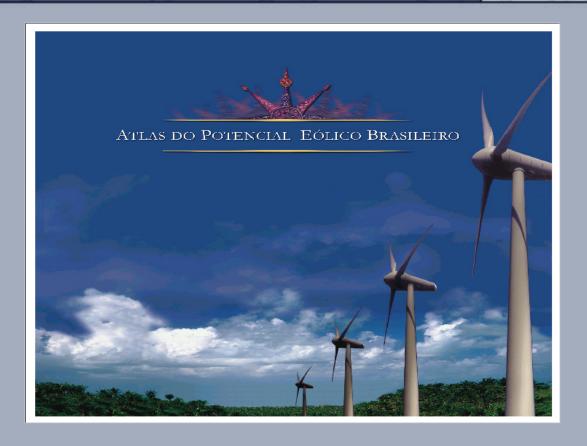
Potência Eólica Instalada no Mundo (MW)


	Fim de 2002	Fim de 2003	Fim de 2004	Fim de 2005	Fim de 2006
Europa	23.357	28.835	34.630	40.898	48.545
América do Norte	4.881	6.678	7.196	9.832	13.062
Ásia	2.184	2.705	3.774	6.990	10.667
América Latina	139	166	212	232	530
Região do Pacífico	524	880	1.501	2.104	2.431
África	149	170	246	271	441
Total	32.037	39.434	47.574	59.091	74.223

Potência Eólica Instalada no Mundo atualmente: 94,1 MW

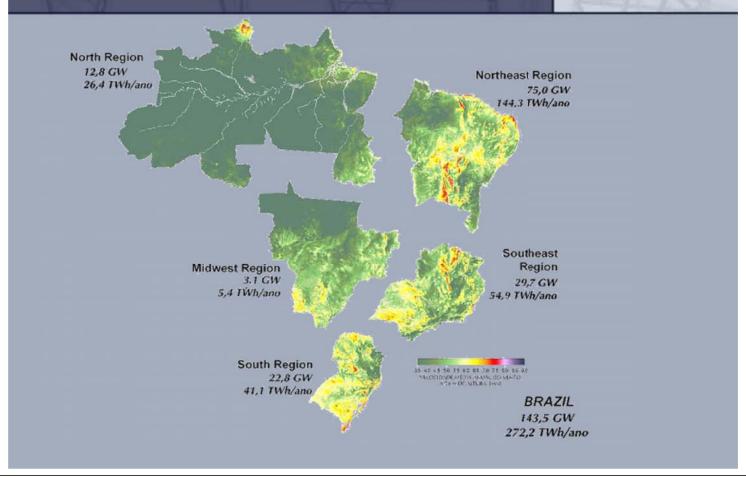
Potência instalada no Brasil: 247 MW

Potência Eólica no Mundo (MW)

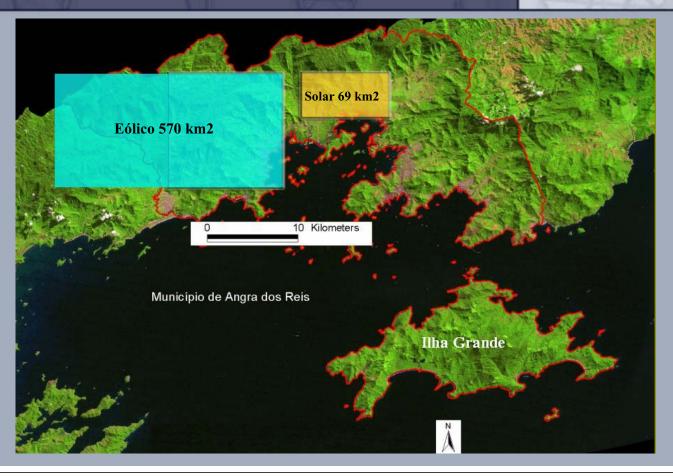


SAZONALIDADE DAS USINAS EÓLICAS DO PROINFA

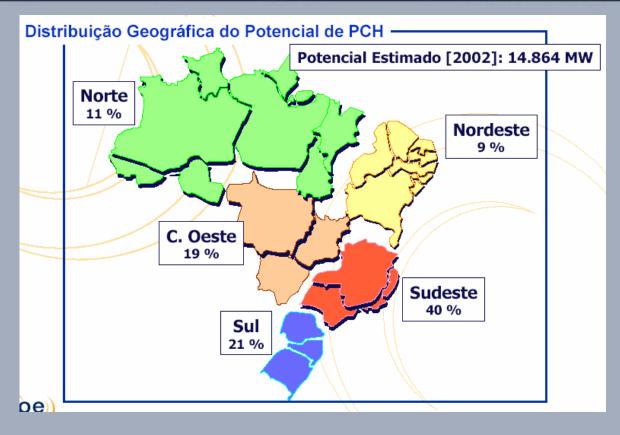
Potencial Eólico Atlas do Potencial Eólico Brasileiro



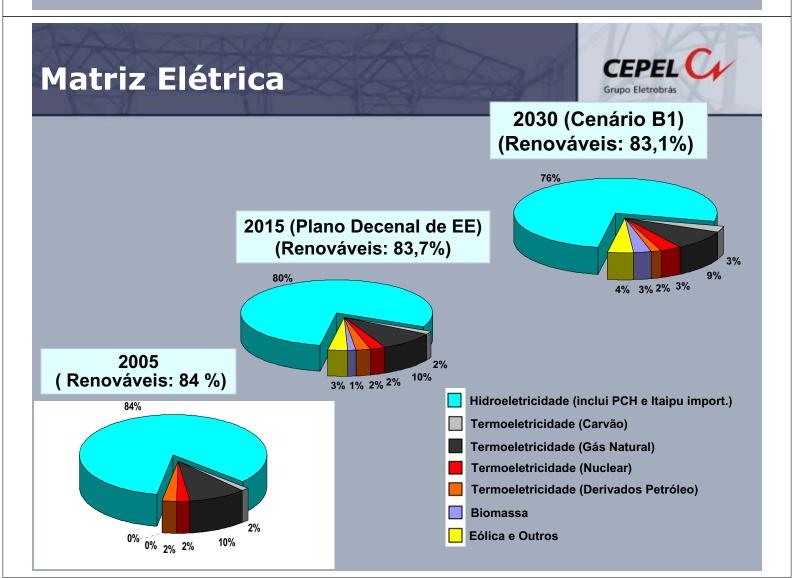
Potencial Eólico por Região


ENERGIA EÓLICA

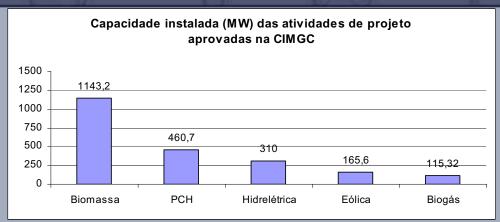
- Perspectivas de crescimento e de ser alternativa a uma expansão de geração térmica contribuindo para evitar aumento de emissões
- O grande potencial eólico brasileiro e evolução tecnológica apontam a eólica como uma alternativa viável econômica e ambientalmente
- Compartilhamento de áreas com outras atividades e também uma característica positiva a ser ressaltada
- •O PNE 2030 indica uma inserção, até 2030, de aproximadamente 5.000 MW da tecnologia eólica. Este número pode ser encarado como conservador, devendo ser revisto à medida que essa tecnologia se firmar no Brasil
- Os Valores Econômicos da geração eólica variam de 203 a 231 R\$/MWh, para fatores de capacidade entre 0,42 e 0,32, respectivamente, sendo superior à média de preços dos leilões de energia nova, de R\$ 139,00/MWh.


Substituindo Usina Nuclear por Energia Solar Fotovoltaica e Energia Eólica Áreas Equivalentes Necessárias – 10 TWh/ano

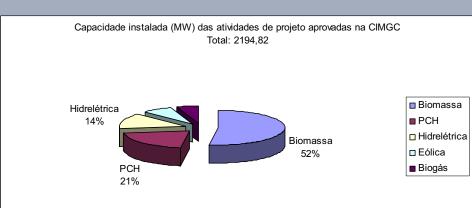
Potencial Estimado - PCH

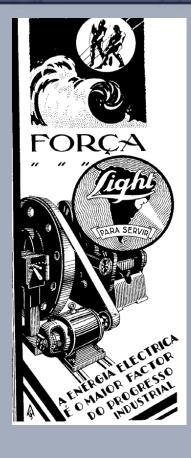

Fonte: EPE - Apresentação PNE 2030

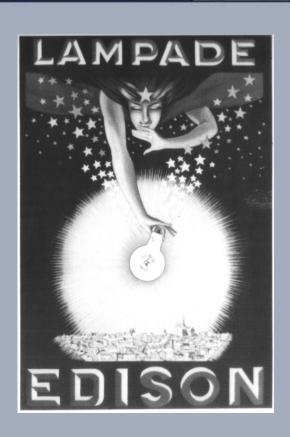
Emissão de CO₂ de Diversas Tecnologias



Tecnologias	Emissões de CO₂ nos estágios de produção de energia (ton/GWh)				
	Extração	Construção	Operação	Total	
Planta convencional de queima de carvão	1	1	962	964	
Planta de queima de gás	0	0	484	484	
Pequenas hidrelétricas	-	10	-	10	
Energia eólica	-	7	-	7	
Solar fotovoltaico	-	5	-	5	
Grandes hidrelétricas	-	4	-	4	
Solar térmico	-	3	-	3	
Lenha (Extração programável)	-1.509	3	1.346	-160	


Fonte: "Renewable Energy Resources: Opportunities and Constraints 1990-2020" - World Energy Council - 1993





Ministério da Ciência e Tecnologia

Conclusões: últimas notícias

"O carvão, e o petróleo não serão os reis da energia mundial para sempre. Não é mais uma tolice olhar o sol, o vento e para as ondas do mar"

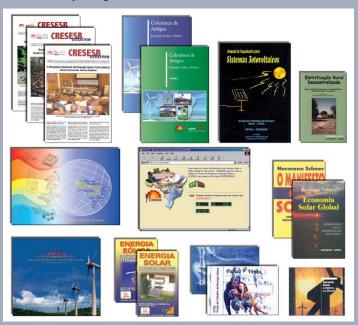
The Economist

"A idade da pedra não acabou porque acabaram as pedras; não é necessário que o petróleo acabe para entrarmos em uma nova era de energia"

SHELL

Conclusões: últimas notícias

"Ás vezes ser moderno é olhar para trás"


Gilberto Gil

Centro de Referência para Energia Solar e Eólica Sérgio Brito – CRESESB www.cresesb.cepel.br

Promover o desenvolvimento das energias solar e eólica através da difusão de conhecimentos, da ampliação do diálogo entre as entidades envolvidas e do estímulo à implementação de estudos e projetos.

"Eu sei que vocês acreditam que entenderam o que vocês pensam que eu disse; mas eu não estou seguro de que vocês percebem que aquilo que ouviram não é o que eu queria dizer."

Alan Greenspan